排序:
共找到34条结果
  • 排放权交易机制下企业碳减排的决策模型研究

    不同的碳排放权交易机制之间有何内在促进和制约关系,排放权交易市场中企业的决策标准是什么,为何发达国家热衷于实行CDM项目,碳税的加入对排放权交易市场有何影响.围绕这一系列重要问题,本文从微观角度出发,在AIM-Enduse模型的基础上加入新的目标函数,重新定义参数,修改约束条件,构建在排放权交易机制下企业减排的单阶段最优化决策模型.在此模型基础上,本文分析了基于配额的排放权交易和基于项目的排放权交易(CDM)之间内在的促进和制约关系,进而发现,参与者数量及参与者之间减排边际成本的离散程度将决定排放权交易市场的交易量;对于减排技术高度发达的国家来说,CDM机制不仅有利于大幅降低其减排成本,还有利于增加排放权交易市场的交易量,但是对于减排技术较为落后的国家来说,CDM机制对其几乎没有影响.
    安崇义,唐跃军 - 经济研究
    文章来源: 万方数据
  • Straight-line compliant mechanisms are important building blocks to design a linear-motion stage,which is very useful in precision applications.However,only a few configurations of straight-line compliant mechanisms are applicable.To construct more kinds of them,an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed,which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint.An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution.To illustrate and verify the proposed method,two kinds of flexural joints,cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF)pivot are used to reconstruct straight-line flexural mechanisms.Their performances are obtained by analytic and FEA method respectively.The comparisons of the results show the accuracy of the approach.Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000within 5 mm displacement.This can lead to a new way to design,analyze or optimize straight-line flexure mechanisms.
     - 中国机械工程学报
    文章来源: 万方数据
  • In design of flexure mechanism, diminishing the parasitic-motion is a key point to improve the accuracy. However, most of existing topics concentrate on improving the accuracy of linear-motion flexure mechanisms via compensating the parasitic error, but few research the multi-dimensional flexure mechanisms. A general design principle and method for high-precision flexure mechanisms based on the parasitic-motion compensation is presented, and the proposed method can compensate the parasitic rotation in company with translation, or the parasitic translation in company with rotation, or both. The crucial step for the method is that the parasitic motion of a flexure mechanism is formulated and evaluated in terms of its compliance. The overall compliance matrix of a general flexure mechanism is formulated by using screw theory firstly, then the criteria for the parasitic motions is introduced by analyzing the characteristics of the resultant compliance matrix as well as with aid of the concept of instantaneous rotation center. Subsequently, a compliance-based compensation approach for reducing parasitic-motion is addressed as the most important part. The design principles and procedure are further discussed to help with improving the accuracy of flexure mechanisms, and case studies are provided to illustrate this method. Finally, an analytical verification is provided to demonstrate that the symmetry design philosophy widely used in flexure design can effectively improve accuracy in terms of the proposed method. The proposed compensation method can be well used to diminish the parasitic-motion of multi-dimensional flexure mechanisms.
     - 中国机械工程学报
    文章来源: 万方数据
  • Existing biped robots mainly fall into two categories: robots with left and right feet and robots with upper and lower feet. The load carrying capability of a biped robot is quite limited since the two feet of a walking robot supports the robot alternatively during walking. To improve the load carrying capability, a novel biped walking robot is proposed based on a 2-UPU+2-UU parallel mechanism. The biped walking robot is composed of two identical platforms(feet) and four limbs, including two UPU(universal-prismatic-universal serial chain) limbs and two UU limbs. To enhance its terrain adaptability like articulated vehicles, the two feet of the biped walking robot are designed as two vehicles in detail. The conditions that the geometric parameters of the feet must satisfy are discussed. The degrees-of-freedom of the mechanism is analyzed by using screw theory. Gait analysis, kinematic analysis and stability analysis of the mechanism are carried out to verify the structural design parameters. The simulation results validate the feasibility of walking on rugged terrain. Experiments with a physical prototype show that the novel biped walking robot can walk stably on smooth terrain. Due to its unique feet design and high stiffness, the biped walking robot may adapt to rugged terrain and is suitable for load-carrying.
     - 中国机械工程学报
    文章来源: 万方数据
  • Condition based maintenance(CBM) issues a new challenge of real-time monitoring for machine health maintenance. Wear state monitoring becomes the bottle-neck of CBM due to the lack of on-line information acquiring means. The wear mechanism judgment with characteristic wear debris has been widely adopted in off-line wear analysis; however, on-line wear mechanism characterization remains a big problem. In this paper, the wear mechanism identification via on-line ferrograph images is studied. To obtain isolated wear debris in an on-line ferrograph image, the deposition mechanism of wear debris in on-line ferrograph sensor is studied. The study result shows wear debris chain is the main morphology due to local magnetic field around the deposited wear debris. Accordingly, an improved sampling route for on-line wear debris deposition is designed with focus on the self-adjustment deposition time. As a result, isolated wear debris can be obtained in an on-line image, which facilitates the feature extraction of characteristic wear debris. By referring to the knowledge of analytical ferrograph, four dimensionless morphological features, including equivalent dimension, length-width ratio, shape factor, and contour fractal dimension of characteristic wear debris are extracted for distinguishing four typical wear mechanisms including normal, cutting, fatigue, and severe sliding wear. Furthermore, a feed-forward neural network is adopted to construct an automatic wear mechanism identification model. By training with the samples from analytical ferrograph, the model might identify some typical characteristic wear debris in an on-line ferrograph image. This paper performs a meaningful exploratory for on-line wear mechanism analysis, and the obtained results will provide a feasible way for on-line wear state monitoring.
     - 中国机械工程学报
    文章来源: 万方数据
  • 中冶美利浆纸2个CDM项目完成现场DOE审定

    6月29日,北京和碳环境技术有限公司(以下简称"和碳公司")开发的中冶美利浆纸有限公司5MW厌氧沼气收集净化与发电项目以及电机系统节电技术改造CDM项目完成了联合国第三方机构现场审定程序.
    孟旱明 - 中华纸业
    文章来源: 万方数据
  • Published studies in regard to coupler systems have been mainly focused on the manufacturing process or coupler strength issues. With the ever increasing of tonnage and length of heavy haul trains, lateral in-train forces generated by longitudinal in-train forces and coupler rotations have become a more and more significant safety issue for heavy haul train operations. Derailments caused by excessive lateral in-train forces are frequently reported. This article studies two typical coupler systems used on heavy haul locomotives. Their structures and stabilizing mechanism are analyzed before the corresponding models are developed. Coupler systems models are featured by two distinct stabilizing mechanism models and draft gear models with hysteresis considered. A model set which consists of four locomotives and three coupler systems is developed to study the rotational behavior of different coupler systems and their implications for locomotive dynamics. Simulated results indicate that when the locomotives are equipped with the type B coupler system, locomotives can meet the dynamics standard on tangent tracks; while the dynamics performance on curved tracks is very poor. The maximum longitudinal in-train force for locomotives equipped with the type B coupler system is 2000 kN. Simulations revealed a distinct trend for the type A coupler system. Locomotive dynamics are poorer for the type A case when locomotives are running on tangent tracks, while the dynamics are better for the type A case when locomotives are running on curved tracks. Theoretical studies and simulations carried out in this article suggest that a combination of the two types of stabilizing mechanism can result in a good design which can significantly decrease the relevant derailments.
    XU Ziqiang,WU Qing,LUO Shihui,MA Weihua,DONG Xiaoqing - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism.Assuming the constraints between the supporting feet and the ground with hinges,the supporting legs and the hexapod body are taken as a parallel mechanism,and each swing leg is regarded as a serial manipulator.The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground.Locomotion performance can be got by analyzing these equivalent mechanisms.The kinematics of the whole robotic system is established,and the influence of foothold position on the workspace of robot body is analyzed.A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle.Referring to service region and service sphere,weight service sphere and weight service region are put forward to evaluate the dexterity of robot body.The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated.Simulation shows when the foothold offset goes up to 174 mm,the dexterity of robot body achieves its maximum value 0.164 4 in mixed gait.The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot,and provide new approach to determine the stride length,body height,footholds in gait planning of multi-legged robot.
     - 中国机械工程学报
    文章来源: 万方数据
  • The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity.A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation.The regularity of nutation angle singularity is analyzed based on the Jacobian matrix,and the singularity surface of 3UPS-S parallel mechanisms is obtained.By applying the concept of reciprocal product in screw theory,the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity.The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB.It is revealed that there are two kinds of situation.Firstly,the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously;Secondly,two limbs cross the singular kinematic screw while the third limb parallels with that screw.It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes.This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.
     - 中国机械工程学报
    文章来源: 万方数据
  • 可重用框架的电子商务开发平台的开发应用

    叙述了基于可重用框架的应用系统开发的平台以及前景,提出了可重用的基于EJB技术的多层结构的物流电子商务开发框架,以及以J2EE技术体系为代表的分布式对象技术.基于可重用框架的电子商务系统具有层次分明、便于维护和发展的优点,具有良好的开发前景,是开发和部署电子商务应用系统的基础.
    曾宪凤 - 物流技术
    文章来源: 万方数据
共4页 转到