排序:
共找到11条结果
  • 氩流体冷凝过程的分子动力学模拟

    冷凝系数为冷凝流率与碰撞流率之比,是气体冷凝过程的重要性质.本文采用分子动力学方法,探讨了不同温度(95.5、104-3、113-3、123.2)K下,氩流体气液两相平衡体系中气相的冷凝过程.模拟得到了氩流体气液相主体范围、Gibbs界面位置及界面厚度;并分别以气相主体与界面区的分界面|z8|及Gibbs界面作为碰撞界面,统计得到了氩流体的冷凝系数,并与文献值进行了比较.模拟结果表明,在相同温度条件下,以Gibbs界面为碰撞界面得到的碰撞粒子数目明显高于以|z8|为碰撞界面得到的碰撞粒子数目.当采用|z8|界面作为碰撞界面时,冷凝系数出随着温度的变化规律与文献值一致,均随着温度的升高而降低,变化范围在0.822与0.596之间;但以Gibbs界面作为碰撞界面时,所得冷凝系数口,基本上与温度无关,其值在0.335左右,且a2明显小于a1.
    霍佳捷,张宇,雷广平,王宝和 - 计算机与应用化学
    文章来源: 万方数据
  • In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.
     - 中国机械工程学报
    文章来源: 万方数据
  • Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.
     - 中国机械工程学报
    文章来源: 万方数据
  • Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid–structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k–ω turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.
     - 中国机械工程学报
    文章来源: 万方数据
  • 胃镜下氩离子凝固术联合奥美拉唑冶疗Barrett食管的长期疗效评价

    目的评价胃镜下氩离子凝固术联合质子泵抑制剂奥美拉唑治疗Barrett食管(BE)的长期临床疗效.方法对2009年1月~2011年1月我院胃镜室检查并经病理证实的Barrett食管患者59例,根据患者意愿分为两组.对照组31例,给予奥美拉唑20mg口服,每日1次;实验组在胃镜下行氩离子凝固术,术后给予奥美拉唑20mg口服,每日1次.两组患者进行随访.于术后3、6和12个月时复查胃镜,评价Barrett食管复发情况.结果治疗后3个月时对照组临床症状缓解例数为15例,缓解率为48.4%,实验组有缓解例数为22例,缓解率为78.6%,实验组明显高于对照组(Xz=5.72,P=0.01).对照组治疗前症状评分为(1.82±0.51)分,治疗后为(1.34±0.66)分;实验组治疗前症状评分为(1.83±0.46)分,治疗后为(0.81±0.28)分,实验组症状缓解明显好于对照组(t=3.94,P〈0.01).术后主要不良反应为胸骨后不适8例(28.6%),黏膜下气肿4例(14.3%)和发热3例(10.7%);随访12个月,实验组累及复发6例(6/28),累及复发率为21.4%.结论胃镜下氩离子凝固术联合奥美拉唑治疗Barrett安全可靠,短期疗效确切,长期随访存在一定的复发率.
    姚晓敏 - 中国医药导报
    文章来源: 万方数据
  • 强化液体管理对重症肺部感染患者心肺保护作用的临床研究

    目的 探讨严格液体管理对重症肺部感染患者心肺保护作用及其可能的机制.方法 将157例重症肺部感染患者随机分为液体管理组和对照组,用脉搏指示连续心输出量监测(PiCCO)的方法检测血流动力学变化指标[心输出量(CO)、心指数(CI)、胸腔内血管容量( ITBVI)、血管外肺水(EVLWI)]并指导液体管理;实验前后测定患者血浆脑型利钠肽(BNP),评估液体管理对患者心功能的影响;测定纤支镜肺灌洗液中白细胞介素(IL)-6的浓度,以评估肺组织局部炎症情况,监测动脉血气分析;实验前后行胸部CT检查评价肺部病变恢复情况.结果 与对照组比较,液体管理组血浆脑型利钠肽、血流动力学指标( CO、CI、EVLWI)和肺组织局部IL-6水平均明显下降(P<0.05),动脉血气氧分压升高(P<0.05),肺泡-动脉氧分压差下降(P<0.05),肺部病变和肺功能明显改善.结论 积极液体管理可保护重症肺部感染患者的心肺功能,其原因可能与降低炎症反应及改善氧合有关.
    方志成,郑翔,刘伯毅,陈黎,黄云飞,盛春风,刘培 - 临床内科杂志
    文章来源: 万方数据
  • The current design of hydro-viscous clutch(HVC)in tracked vehicle fan transmission mainly focuses on high-speed and high power.However,the fluid torque under the influence of fluid temperature can not be predicted accurately by conventional mathematical model or experimental research.In order to validate the fluid torque of HVC by taking the viscosity-temperature characteristic of fluid into account,the test rig is designed.The outlet oil temperature is measured and fitted with different rotation speed,oil film thickness,oil flow rate,and inlet oil temperature.Meanwhile,the film torque can be obtained.Based on Navier-Stokes equations and the continuity equation,the mathematical model of fluid torque is proposed in cylindrical coordinate.Iterative method is employed to solve the equations.The radial and tangential speed distribution,radial pressure distribution and theoretical flow rate are determined and analyzed.The models of equivalent radius and fluid torque of friction pairs are introduced.The experimental and theoretical results indicate that tangential speed distribution is mainly determined by the relative rotating speed between the friction plate and the separator disc.However,the radial speed distribution and pressure distribution are dominated by pressure difference at the lower rotating speed.The oil film fills the clearance and the film torque increases with increasing rotating speed.However,when the speed reaches a certain value,the centrifugal force will play an important role on the fluid distribution.The pressure is negative at the outer radius when inlet flow rate is less than theoretical flow,so the film starts to shrink which decreases the film torque sharply.The theoretical fluid torque has good agreement with the experimental data.This research proposes a new fluid torque mathematical model which may predict the film torque under the influence of temperature more accurately.
     - 中国机械工程学报
    文章来源: 万方数据
  • Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively.
     - 中国机械工程学报
    文章来源: 万方数据
  • DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.
     - 中国机械工程学报
    文章来源: 万方数据
  • 控制棒驱动机构自然循环冷却方式的可行性研究

    传统的二代压水反应堆主要是采取鼓风机鼓风的方式对控制棒驱动机构(Control Rod Drive Mechanism,CRDM)进行强制通风冷却,该冷却方式耗能较大且无法保证绝对安全可靠.本文针对于大亚湾核电站中CRDM群的布置方式,采用中广核新型的EMC-B型控制棒驱动机构的结构及材料物性参数,运用了计算流体力学(Computational Fluid Dynamics,CFD)分析方法,研究了当采用空气自然循环冷却方式时,CRDM群及各线圈的温度分布,探索对CRDM群采用空气自然循环冷却方式的可行性.模拟分析结果表明:总体来看,处于外围和中心位置处的CRDM的线圈温度,要比中间区域的CRDM线圈温度高;对于给定计算工况,各线圈的最高温度为198°C,低于限制温度(200°C),表明对于所研究的CRDM群,依靠空气的自然对流,可以对CRDM进行有效冷却.计算结果可为新型CRDM群分布设计提供参考.
    邹鹏,王建军,葛增芳,王怡明 - 核技术
    文章来源: 万方数据
共2页 转到