排序:
共找到36条结果
  • 组件设计对卷式反渗透膜元件抗污染性及能耗影响

    选择在螺旋卷式反渗透膜元件组件设计中,对影响膜元件使用寿命的抗污染性能及影响膜元件系统运行能耗的工艺参数进行理论模拟实验,并与实际生产运行相结合,得出最优化的设计组合.主要工艺参数为给水流道布宽度、深度、入水角度、及膜元件卷制页数的优化选择,筛选出提高抗污染性能及低能耗、高经济性的膜元件,并对螺旋卷式膜元件的设计起指导作用.
    王双,梁剑,蔡相宇,祝敏 - 膜科学与技术
    文章来源: 万方数据
  • Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
    LI Yutong,WANG Yuxin,DUFFY Alex H B - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • The existing research of process capability indices of multiple quality characteristics mainly focuses on nonconforming of process output, the concept development of univariate process capability indices, quality loss function and various comprehensive evaluation methods. The multivariate complexity increases the computation difficulty of multivariate process capability indices(MPCI), which makes them hard to be used in practice. In this paper, a new PCA-based MPCI approach is proposed to assess the production capability of the processes that involve multiple product quality characteristics. This approach first transforms the original quality variables into standardized normal variables. MPCI measures are then provided based on the Taam index. Moreover, the statistical properties of these MPCIs, such as confidence intervals and lower confidence bound, are given to let the practitioners understand the capability indices as random variables instead of deterministic variables. A real manufacturing data set and a synthetic data set are used to demonstrate the effectiveness of the proposed method. An implementation procedure is also provided for quality engineers to apply our MPCI approach in their manufacturing processes. The case studies demonstrate the effectiveness and feasibility of this new kind of MPCI, which is easier to be used in production practice. The proposed research provides a novel approach of MPCI calculation.
     - 中国机械工程学报
    文章来源: 万方数据
  • For planning optimum multiple stresses accelerated life test plans, a commonly followed guiding principle is that all parameters of the life-stress relationship should be estimated, and the number of the stress level combinations must be no less than the number of parameters of the life-stress relationship. However, the general objective of an accelerated life test(ALT) is to assess the p-th quantile of the product life distribution under normal stress. For this objective, estimating all model parameters is not necessary, and this will increase the cost of test. Based on the theoretical conclusion that the stress level combinations of the optimum multiple stresses ALT plan locate on a straight line through the origin of coordinate, it is proposed that a design idea of planning the optimum multiple stresses ALT plan through transforming the problem of designing an optimum multiple stresses ALT plan to designing an optimum single stress ALT plan. Moreover, a method of planning the optimum multiple stresses ALT plan which can avoid estimating all model parameters is established. An example shows that, the proposed plan which only has two stress level combinations could achieve an accuracy no less than the traditional plan, and save the test time and cost on one stress level combination at least; when the actual product life is less than the design value, even the deviation of the model initial parameters value is up to 20%, the variance of the estimation of the p-th quantile of the proposed plan is still smaller than the traditional plans approximately 25%. A design method is provided for planning the optimum multiple stresses ALT which uses the statistical optimum degenerate test plan as the optimum multiple stresses accelerated life test plan.
    GAO Liang,CHEN Wenhua,QIAN Ping,PAN Jun,HE Qingchuan - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces.However,low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model.This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information.The MPCA model and the knowledge base are built based on the new subspace.Then,fault detection and isolation with the squared prediction error(SPE)statistic and the Hotelling(T2)statistic are also realized in process monitoring.When a fault occurs,fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables.For fault isolation of subspace based on the T2 statistic,the relationship between the statistic indicator and state variables is constructed,and the constraint conditions are presented to check the validity of fault isolation.Then,to improve the robustness of fault isolation to unexpected disturbances,the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation.Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system(ASCS)to prove the correctness and effectiveness of the algorithm.The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model,and sets the relationship between the state variables and fault detection indicators for fault isolation.
     - 中国机械工程学报
    文章来源: 万方数据
  • The current research of the decomposition methods of complex optimization model is mostly based on the principle of disciplines, problems or components. However, numerous coupling variables will appear among the sub-models decomposed, thereby make the efficiency of decomposed optimization low and the effect poor. Though some collaborative optimization methods are proposed to process the coupling variables, there lacks the original strategy planning to reduce the coupling degree among the decomposed sub-models when we start decomposing a complex optimization model. Therefore, this paper proposes a decomposition method based on the global sensitivity information. In this method, the complex optimization model is decomposed based on the principle of minimizing the sensitivity sum between the design functions and design variables among different sub-models. The design functions and design variables, which are sensitive to each other, will be assigned to the same sub-models as much as possible to reduce the impacts to other sub-models caused by the changing of coupling variables in one sub-model. Two different collaborative optimization models of a gear reducer are built up separately in the multidisciplinary design optimization software iSIGHT, the optimized results turned out that the decomposition method proposed in this paper has less analysis times and increases the computational efficiency by 29.6%. This new decomposition method is also successfully applied in the complex optimization problem of hydraulic excavator working devices, which shows the proposed research can reduce the mutual coupling degree between sub-models. This research proposes a decomposition method based on the global sensitivity information, which makes the linkages least among sub-models after decomposition, and provides reference for decomposing complex optimization models and has practical engineering significance.
     - 中国机械工程学报
    文章来源: 万方数据
  • 衡水市降水量序列变化规律分析

    利用衡水市1956年-2010年降水量资料,分析该区域降水量变化情况.采用数理统计法、PCI法对降水量的年内变化与年际变化进行分析,年内降水比较集中,季节分配不均匀,80%左右的降水量集中在夏季汛期,年际变化大,极值比为3.45.采用Mann-Kendall非秩次相关检验法、线性回归法对降水量序列进行趋势分析,降水量呈递减趋势,平均每年递减2.0mm,但没有出现明显的突变.采用距平分析和模比系数差积曲线法对降水量进行了阶段性分析,降水系列包括一个丰枯周期,大约为50年左右.采用自相关分析法对降水量系列进行随机成分分析,降水量系列的独立性强,相依性很弱.
    王永亮 - 南水北调与水利科技
    文章来源: 万方数据
  • LI Hui,HE Jin,WANG Qingjie,LI Hongwen,RASAILY Rabi Gautam,CAO Qingchun,ZHANG Xiangcai - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • The 3D inverse design method,which methodology is far superior to the conventional design method that based on geometrical description,is gradually applied in pump blade design.However,no complete description about the method is outlined.Also,there are no general rules available to set the two important input parameters,blade loading distribution and stacking condition.In this sense,the basic theory and the mechanism why the design method can suppress the formation of secondary flow are summarized.And also,several typical pump design cases with different specific speeds ranging from centrifugal pump to axial pump are surveyed.The results indicates that,for centrifugal pump and mixed pump or turbine,the ratio of blade loading on the hub to that on the shroud is more than unit in the fore part of the blade,whereas in the aft part,the ratio is decreased to satisfy the same wrap angle for hub and shroud.And the choice of blade loading type depends on the balancing of efficiency and cavitation.If the cavitation is more weighted,the better choice is aft-loaded,otherwise,the fore-loaded or mid-loaded is preferable to improve the efficiency.The stacking condition,which is an auxiliary to suppress the secondary flow,can have great effect on the jet-wake outflow and the operation range for pump.Ultimately,how to link the design method to modern optimization techniques is illustrated.With the know-how design methodology and the know-how systematic optimization approach,the application of optimization design is promising for engineering.This paper summarizes the 3D inverse design method systematically.
     - 中国机械工程学报
    文章来源: 万方数据
  • Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming.However,convergence rate of iterative methods is difficult to improve greatly.To increase the springback compensate speed of designing age forming mold,process of calculating springback for a certain mold with finite element method is analyzed.Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method.The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB.Three rectangular integrated panels of dimensions 710 mm′750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies.The algorithm is used to compute mold contours for the panels with cylinder,sphere and saddle contours respectively and it takes 57%,22%and 33%iterations as compared to that of displacement adjustment(DA)method.At the end of iterations,maximum deviations on the three panels are 0.618 4 mm,0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method(0.740 8 mm,0.740 8 mm and 0.713 7 mm respectively).In following experimental verification,mold contour for another integrated panel with 400 mm*380 mm size is designed by the algorithm.Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise.Deviation between measuring results and the panel's design contour is less than 1 mm.Finally,the iterations with different mesh sizes(40 mm,35mm,30 mm,25 mm,20 mm)in finite element models are compared and found no considerable difference.Another possible compensation method,Broyden-Fletcher-Shanmo method,is also presented based on the solving nonlinear functions idea.The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel.It only takes 50%iterations compared to that of DA.The proposed method can serve a faster mold contour compensation method for sheet metal forming.
     - 中国机械工程学报
    文章来源: 万方数据
共4页 转到