-
基于模糊矩阵分析法的物流企业文化竞争力研究
在介绍物流企业及其文化竞争力建设的基础上,运用模糊矩阵分析法构建物流企业文化竞争力的评价指标体系,探讨我国物流企业文化竞争力建设的主要措施,以期为我国物流企业文化竞争力建设提供一定参考.耿元 - 物流技术文章来源: 万方数据 -
运用Excel进行物流信息化模糊综合评价
通过分析物流信息化的涵义,在遵循指标体系构建原则基础上设计物流信息化评价指标体系,将层次分析法与模糊综合评价法结合起来进行客观评价,并且巧妙运用Excel计算表进行求解.邢宗新 - 物流技术文章来源: 万方数据 -
The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity.A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation.The regularity of nutation angle singularity is analyzed based on the Jacobian matrix,and the singularity surface of 3UPS-S parallel mechanisms is obtained.By applying the concept of reciprocal product in screw theory,the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity.The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB.It is revealed that there are two kinds of situation.Firstly,the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously;Secondly,two limbs cross the singular kinematic screw while the third limb parallels with that screw.It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes.This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.- 中国机械工程学报文章来源: 万方数据
-
In design of flexure mechanism, diminishing the parasitic-motion is a key point to improve the accuracy. However, most of existing topics concentrate on improving the accuracy of linear-motion flexure mechanisms via compensating the parasitic error, but few research the multi-dimensional flexure mechanisms. A general design principle and method for high-precision flexure mechanisms based on the parasitic-motion compensation is presented, and the proposed method can compensate the parasitic rotation in company with translation, or the parasitic translation in company with rotation, or both. The crucial step for the method is that the parasitic motion of a flexure mechanism is formulated and evaluated in terms of its compliance. The overall compliance matrix of a general flexure mechanism is formulated by using screw theory firstly, then the criteria for the parasitic motions is introduced by analyzing the characteristics of the resultant compliance matrix as well as with aid of the concept of instantaneous rotation center. Subsequently, a compliance-based compensation approach for reducing parasitic-motion is addressed as the most important part. The design principles and procedure are further discussed to help with improving the accuracy of flexure mechanisms, and case studies are provided to illustrate this method. Finally, an analytical verification is provided to demonstrate that the symmetry design philosophy widely used in flexure design can effectively improve accuracy in terms of the proposed method. The proposed compensation method can be well used to diminish the parasitic-motion of multi-dimensional flexure mechanisms.- 中国机械工程学报文章来源: 万方数据
-
The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.- 中国机械工程学报文章来源: 万方数据
-
Forming limit curves(FLCs) are commonly used for evaluating the formability of sheet metals. However, it is difficult to obtain the FLCs with desirable accuracy by experiments due to that the friction effects are non-negligible under warm/hot stamping conditions. To investigate the experimental errors, experiments for obtaining the FLCs of the AA5754 are conducted at 250℃. Then, FE models are created and validated on the basis of experimental results. A number of FE simulations are carried out for FLC test-pieces and punches with different geometry configurations and varying friction coefficients between the test-piece and the punch. The errors for all the test conditions are predicted and analyzed. Particular attention of error analysis is paid to two special cases, namely, the biaxial FLC test and the uniaxial FLC test. The failure location and the variation of the error with respect to the friction coefficient are studied as well. The results obtained from the FLC tests and the above analyses show that, for the biaxial tension state, the friction coefficient should be controlled within 0.15 to avoid significant shifting of the necking location away from the center of the punch; for the uniaxial tension state, the friction coefficient should be controlled within 0.1 to guarantee the validity of the data collected from FLC tests. The conclusions summarized are beneficial for obtaining accurate FLCs under warm/hot stamping conditions.- 中国机械工程学报文章来源: 万方数据
-
In the prediction of active vibration isolation performance,control force requirements were ignored in previous work.This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators.The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated.Distributed parameter models are developed to analyze the system response,and to produce a transfer matrix for the design of an integrated passive-active isolation system.Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed.The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts.Vertical and transverse forces as well as a rotational moment are applied at the rigid body,and resonances excited in elastic mounts and the supporting plate are analyzed.The overall isolation performance is evaluated by numerical simulation.The simulation results are then compared with those obtained using unconstrained control strategies.In addition,the effects of waves in elastic mounts are analyzed.It is shown that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range,but also require large control force amplitudes to control excited vibration modes of the system.Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs.In the frequency range in which rigid body modes are present,the control strategies can only achieve 5–10 dB power transmission reduction,when control forces are constrained to be the same order of the magnitude as the primary vertical force.The resonances of the elastic mounts result in a notable increase of power transmission in high frequency range and cannot be attenuated by active control.The investigation provides a guideline for design and evaluation of active vibration isolation systems.- 中国机械工程学报文章来源: 万方数据
-
Existing biped robots mainly fall into two categories: robots with left and right feet and robots with upper and lower feet. The load carrying capability of a biped robot is quite limited since the two feet of a walking robot supports the robot alternatively during walking. To improve the load carrying capability, a novel biped walking robot is proposed based on a 2-UPU+2-UU parallel mechanism. The biped walking robot is composed of two identical platforms(feet) and four limbs, including two UPU(universal-prismatic-universal serial chain) limbs and two UU limbs. To enhance its terrain adaptability like articulated vehicles, the two feet of the biped walking robot are designed as two vehicles in detail. The conditions that the geometric parameters of the feet must satisfy are discussed. The degrees-of-freedom of the mechanism is analyzed by using screw theory. Gait analysis, kinematic analysis and stability analysis of the mechanism are carried out to verify the structural design parameters. The simulation results validate the feasibility of walking on rugged terrain. Experiments with a physical prototype show that the novel biped walking robot can walk stably on smooth terrain. Due to its unique feet design and high stiffness, the biped walking robot may adapt to rugged terrain and is suitable for load-carrying.- 中国机械工程学报文章来源: 万方数据
-
The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation. A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-α integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system. Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.- 中国机械工程学报文章来源: 万方数据
-
As one of the most wear monitoring indicator, dimensional feature of individual particles has been studied mostly focusing on off-line analytical ferrograph. Recent development in on-line wear monitoring with wear debris images shows that merely wear debris concentration has been extracted from on-line ferrograph images. It remains a bottleneck of obtaining the dimension of on-line particles due to the low resolution, high contamination and particle's chain pattern of an on-line image sample. In this work, statistical dimension of wear debris in on-line ferrograph images is investigated. A two-step procedure is proposed as follows. First, an on-line ferrograph image is decomposed into four component images with different frequencies. By doing this, the size of each component image is reduced by one fourth, which will increase the efficiency of subsequent processing. The low-frequency image is used for extracting the area of wear debris, and the high-frequency image is adopted for extracting contour. Second, a statistical equivalent circle dimension is constructed by equaling the overall wear debris in the image into equivalent circles referring to the extracted total area and premeter of overall wear debris. The equivalent circle dimension, reflecting the statistical dimension of larger wear debris in an on-line image, is verified by manual measurement. Consequently, two preliminary applications are carried out in gasoline engine bench tests of durability and running-in. Evidently, the equivalent circle dimension, together with the previously developed concentration index, index of particle coverage area(IPCA), show good performances in characterizing engine wear conditions. The proposed dimensional indicator provides a new statistical feature of on-line wear particles for on-line wear monitoring. The new dimensional feature conveys profound information about wear severity.WU Tonghai,PENG Yeping,DU Ying,WANG Junqun - 中国机械工程学报(英文版)文章来源: 万方数据

