排序:
共找到15条结果
  • 某拱坝固结灌浆期问裂缝成因分析与预防措施研究

    以某拱坝为例,深入分析了不同固结灌浆阶段拱坝出现裂缝的成因和机理.高温季节控制固结灌浆上抬压力是避免开裂的关键;低温季节固结灌浆时表面温度应力是主导因素,尤其是出现长间歇期时.结合反馈分析与预报仿真结果,提出高温季节固结灌浆时应合理控制盖重厚度、灌浆压力以及灌浆开始的龄期;低温季节固结灌浆时,要做好保温工作.此外还可考虑采用无盖重灌浆来减小长间歇时间.
    刘有志,李仁江,李柄锋,杨萍,李金桃 - 水力发电
    文章来源: 万方数据
  • In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of such rolling bearings under heavy load and high speed still cannot be effectively predicted yet. A simplified model of tapered roller bearings consisted of one inner raceway, one outer raceway and a tapered roller was established, in which the interaction of several heat sources is ignored. The contact mechanics model, temperature model and model of scuffing failure are synthesized, and the corresponding computer programs are developed to analyze the effects of bearings parameters, different material and operational conditions on thermal performance of bearings, and temperature distribution and the possibility of surface scuffing are obtained. The results show that load, speed, thermal conductivity and tapered roller materials influence temperature rise and scuffing failure of bearings. Ceramic material of tapered roller results in the decrease of scuffing possibility of bearings to a high extent than the conventional rolling bearing steel. Compared with bulk temperature, flash temperature on the surfaces of bearing elements has a little influence on maximum temperature rise of bearing elements. For the rolling bearings operated under high speed and heavy load, this paper proposes a method which can accurately calculate the possibility of scuffing failure of rolling bearings.
    WANG Ailin,WANG Jiugen - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • It is a common phenomenon that the cracks originating from a hole can cause structural damage in engineering.However,the fracture mechanics studies of hole edge crack problems are not sufficient.The problem of an elliptical hole with two collinear edge cracks of unequal length in an infinite plate under uniform tension at infinity is investigated.Based on the complex variable method,the analytical solutions of stress functions and stress intensity factors are provided.The stress distribution along the axes and the edge of the elliptical hole is given graphically.The numerical results show that there is obvious stress concentration near the hole and cracks,and the stresses tend to applied loads at distances far from the defect,which conform to Saint-Venant's principle.Hence,the stress functions are proved to be right.Under special conditions,the present configuration becomes the Griffith crack,two symmetrical cracks emanating from an elliptical hole,two cracks of unequal length emanating from a circular hole,a crack at the edge of a circular hole,or a crack emanating from an elliptical hole.Compared with available results,stress intensity factors for these special shapes of ellipses and cracks show good coincidence.The stress intensity factor for two cracks of unequal length at the edge of an elliptical hole increases with the crack length and the major-to-minor axis ratio of the elliptical hole.The stress distribution in an infinite plate containing an elliptic hole with unsymmetrical cracks is given for the first time.
     - 中国机械工程学报
    文章来源: 万方数据
  • There is less research on vertical sculptured grinding technology.Especially in high vertical surface grinding process with the cup abrasive wheel,the thermal damage is prone to happen and undermine the grinding surface integrity.This problem limits to improve the grinding efficiency and the grinding ratio greatly.Through the analysis of vertical surface grinding process and features in depth,this paper revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel.Based on the previous research achievements,the grinding experiments on TC4(Ti-6Al-4V)and GH4169 are carried out utilizing the self-inhaling internal cooling wheel.The experimental results show that the self-inhaling internal cooling wheel can efficiently reduce the grinding surface temperature.Moreover,the inherent mechanism of reducing the grinding temperature using the internal cooling method is revealed.Meanwhile,under the same grinding conditions,the grinding ratio during the experiments on GH4169 using self-inhaling internal cooling method is about 3 times as high as using conventional external cooling method.And the grinding forces can be reduced by about 20%.This research revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel,which provides theoretical basis for the design and application of self-inhaling internal cooling wheel.At the same time,an efficient and non-invasive surface grinding method of TC4 and GH4169 is presented.
     - 中国机械工程学报
    文章来源: 万方数据
  • Influence of geometric and cutting parameters of cemented carbide cutting tool on reliability of cutting tool has become more and more mature,yet influence of its physical and material parameters on reliability is still blank.In view of this,cutting test and fatigue crack growth test of YT05 cemented carbide cutting tool are conducted to measure such data as the original crack size,growth size,times of impact loading,number and time of cutting tool in failure,and stress distribution of cutting tool is also obtained by simulating cutting process of tools.Mathematical models on dynamic reliability and dynamic reliability sensitivity of cutting tool are derived respectively by taking machining time and times of impact loading into account,thus change rules of dynamic reliability sensitivity to physical and material parameters can be obtained.Theoretical and experimental results show that sensitive degree on each parameter of tools increases gradually with the increase of machining time and times of impact loading,especially for parameters such as fracture toughness,shape parameter,and cutting stress.This proposed model solves such problems as how to determine the most sensitive parameter and influence degree of physical parameters and material parameters to reliability,which is sensitivity,and can provide theoretical foundation for improving reliability of cutting tool system.
     - 中国机械工程学报
    文章来源: 万方数据
  • Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid–structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k–ω turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.
     - 中国机械工程学报
    文章来源: 万方数据
  • The competition of surface and subsurface crack initiation induced failure is critical to understand very high cycle fatigue(VHCF)behavior,which necessitates the elucidation of the underlying mechanisms for the transition of crack initiation from surface to interior defects.Crack initiation potential in materials containing defects is investigated numerically by focusing on defect types,size,shape,location,and residual stress influences.Results show that the crack initiation potency is higher in case of serious property mismatching between matrix and defects,and higher strength materials are more sensitive to soft inclusions(elastic modulus lower than the matrix).The stress localization around inclusions are correlated to interior crack initiation mechanisms in the VHCF regime such as inclusion-matrix debonding at soft inclusions and inclusion-cracking for hard inclusions(elastic modulus higher than the matrix).It is easier to emanate cracks from the subsurface pores with the depth 0.7 times as large as their diameter.There exists an inclusion size independent region for crack incubation,outside which crack initiation will transfer from the subsurface soft inclusion to the interior larger one.As for elliptical inclusions,reducing the short-axis length can decrease the crack nucleation potential and promote the interior crack formation,whereas the long-axis length controls the site of peak stress concentration.The compressive residual stress at surface is helpful to shift crack initiation from surface to interior inclusions.Some relaxation of residual stress can not change the inherent crack initiation from interior inclusions in the VHCF regime.The work reveals the crack initiation potential and the transition among various defects under the influences of both intrinsic and extrinsic factors in the VHCF regime,and is helpful to understand the failure mechanism of materials containing defects under long-term cyclic loadings.
     - 中国机械工程学报
    文章来源: 万方数据
  • The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.
     - 中国机械工程学报
    文章来源: 万方数据
  • Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01 W dynamometer and a NEC TVS-500 EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.
    XU Linlin,WANG Chengyong,JIANG Min,HE Huiyu,SONG Yuexian,CHEN Hanyuan,SHEN Jingnan,ZHANG Jiayong - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • The current design of hydro-viscous clutch(HVC)in tracked vehicle fan transmission mainly focuses on high-speed and high power.However,the fluid torque under the influence of fluid temperature can not be predicted accurately by conventional mathematical model or experimental research.In order to validate the fluid torque of HVC by taking the viscosity-temperature characteristic of fluid into account,the test rig is designed.The outlet oil temperature is measured and fitted with different rotation speed,oil film thickness,oil flow rate,and inlet oil temperature.Meanwhile,the film torque can be obtained.Based on Navier-Stokes equations and the continuity equation,the mathematical model of fluid torque is proposed in cylindrical coordinate.Iterative method is employed to solve the equations.The radial and tangential speed distribution,radial pressure distribution and theoretical flow rate are determined and analyzed.The models of equivalent radius and fluid torque of friction pairs are introduced.The experimental and theoretical results indicate that tangential speed distribution is mainly determined by the relative rotating speed between the friction plate and the separator disc.However,the radial speed distribution and pressure distribution are dominated by pressure difference at the lower rotating speed.The oil film fills the clearance and the film torque increases with increasing rotating speed.However,when the speed reaches a certain value,the centrifugal force will play an important role on the fluid distribution.The pressure is negative at the outer radius when inlet flow rate is less than theoretical flow,so the film starts to shrink which decreases the film torque sharply.The theoretical fluid torque has good agreement with the experimental data.This research proposes a new fluid torque mathematical model which may predict the film torque under the influence of temperature more accurately.
     - 中国机械工程学报
    文章来源: 万方数据
共2页 转到