排序:
共找到60条结果
  • 基于FLUENT水气变换反应在多孔介质内的两温度模型

    利用计算流体力学(CFD)方法建立了一个耦合低温水气变换反应的多孔介质二维拟均相反应器模型.采用FLUENT缺省的单温度模型进行模拟,无法得到气固相两相的温度,而且温度场与实际不符.通过用户自定义标量(UDS)添加固相能量方程,将多孔介质的单温度模型修正为气固相耦合传热两温度模型,以源项的形式添加化学反应,将化学反应热添加到气固相能量方程.湍流模型采用Spalart.Allmaras方程,动力学模型采用Langmuir-Hinshelwood方程,催化剂的性质及操作条件以Wei.HsinChen等的实验为基础.采用有限体积法对模型进行非稳态模拟,对反应器内组分浓度、速度场及温度进行了可视化分析.最后列出了非稳态两温度模型在3个时间点的轴向温度曲线,并且与FLUENT缺省的单温度模型进行了对比,两温度模型的结果与实际更相符.
    龙回龙,许明杰,于东华,丁扬,王克峰 - 计算机与应用化学
    文章来源: 万方数据
  • In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the leakage flow rate can be obtained by finite element method, computational fluid dynamics method and experimental measurement method. However, it will take much time to carry out the above measurements and calculations. In this paper, the approximate model of parallel grooves based on the narrow groove theory is used to establish the dynamic equations of the gas film for the purpose of obtaining the dynamic parameters of gas film. The nonlinear differential equations of gas film model are solved by Runge-Kutta method and shooting method. The numerical values of the pressure profiles, leakage flux and opening force on the seal surface are integrated, and then compared to experimental data for the reliability of the numerical simulation. The results show that the numerical simulation curves are in good agreement with experimental values. Furthermore, the opening force and the leakage flux are proved to be strongly correlated with the operating parameters. Then, the function-coupling method is introduced to analyze the numerical results to obtain the correlation formulae of the opening force and leakage flux respectively with the operating parameters, i.e., the inlet pressure and the rotating speed. This study intends to provide an effective way to predict the aerodynamic performance for designing and optimizing the groove styles in dry gas seal rapidly and accurately.
     - 中国机械工程学报
    文章来源: 万方数据
  • Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.
    XU Jing,PENG Xudong,BAI Shaoxian,MENG Xiangkai,LI Jiyun - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • Joining of aluminum to steel has attracted significant attention from the welding research community,automotive and rail transportation industries.Many current welding methods have been developed and applied,however,they can not precisely control the heat input to work-piece,they are high costs,low efficiency and consist lots of complex welding devices,and the generated intermetallic compound layer in weld bead interface is thicker.A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW)method is developed.To achieve a stable welding process for joining of aluminum to steel,a mathematical model of coupled arc is established,and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed.Then,the impulse control simulation of coupled arc length,wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD).To prove the proposed PSO based PID control scheme's feasibility,the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel.The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length,wire feed speed and the average main arc voltage when the welding process is disturbed,and the developed controller has a faster response and adjustment,only runs about 0.1 s.The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s.The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current.The control experiment proves the accuracy of proposed model and feasibility of new control scheme further.The beautiful and smooth weld beads are also obtained by this method.Pulsed DE-GMAW can thus be considered as an alternative method for low cost,high efficiency joining of aluminum to steel.
     - 中国机械工程学报
    文章来源: 万方数据
  • 基于Mean-Shift的复杂工业环境运动目标跟踪算法

    随着近年来计算机及成像技术的高速发展,视频运动目标检测和跟踪已成为计算机视觉领域的一个研究热点.由于运动目标与摄像头位置的相对变化、室内光照的变化及噪声的存在,以及周围环境中相似物体的干扰,传统的Mean-Shift跟踪算法的跟踪效率、准确性和抗干扰能力均无法满足该应用的需要.为了解决这一问题,在传统Mean-Shift跟踪算法基础之上,提出了颜色直方图更新算法、运动信息融合等改进方案,在Mean-Shift迭代搜索过程中加入了速度矢量加权机制,使目标与相似背景能够有效地被区分开来,提高了系统的抗干扰能力.仿真实验结果表明算法有效提高了跟踪的效率及准确性,能够满足复杂工业环境中运动目标跟踪的需要.
    华聚良,黄河燕,王树梅 - 系统仿真学报
    文章来源: 万方数据
  • Straight-line compliant mechanisms are important building blocks to design a linear-motion stage,which is very useful in precision applications.However,only a few configurations of straight-line compliant mechanisms are applicable.To construct more kinds of them,an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed,which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint.An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution.To illustrate and verify the proposed method,two kinds of flexural joints,cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF)pivot are used to reconstruct straight-line flexural mechanisms.Their performances are obtained by analytic and FEA method respectively.The comparisons of the results show the accuracy of the approach.Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000within 5 mm displacement.This can lead to a new way to design,analyze or optimize straight-line flexure mechanisms.
     - 中国机械工程学报
    文章来源: 万方数据
  • 基于椭圆对数极坐标变换的尺度变化目标跟踪算法

    针对传统对数极坐标变换局限于跟踪圆形或类圆形尺度变化目标这一问题,提出一种基于椭圆对数极坐标变换域下目标匹配的尺度变化目标跟踪算法.算法利用Mean Shift进行空间定位,确定目标的形心,通过椭圆对数极坐标变换域中目标和候选的最大相关匹配系数来确定目标的尺度参数.实验结果表明:该文算法在目标小形变和光照变化条件下,跟踪误差较小,尺度跟踪准确率更高,具有较好的鲁棒性.
    李武,侯志强,魏国剑,余旺盛 - 应用光学
    文章来源: 万方数据
  • Objective To detect the cell viability and the expressions of stem cell surface markers after chemotherapeutic drug treatment.Methods We observed the cytotoxic effects of three chemotherapeutic agents[epirubicin(Epi),fluorouracil(5-FU)and cyclophosphamide(Cyc)]in three cell lines,and the cell viabilities after removed these chemotherapeutic agents.Expressions of stem cell surface markers CD44,CD24,CD90,CD14 and aldehyde dehydrogenase1(ALDH1)in breast cancer cells were analyzed by real-time PCR.The post hoc analysis(Tukey's tests)in conjunction with one-way ANOVA was used for statistical analysis.Results The initial cytotoxic efficacy was most notable.After the treatment of the same therapeutic agents,cell viability was decreased by 64.8%35.14%,32.25%in BT-483 cells,66.4%,22.94%and 45.88%in MDA-MB-231 cells,97.1%,99.5%and 76.4%in MCF cells.The difference was significant compared with that before treatment(P=0.000).However,the inhibitory effects were diminished after chemotherapeutic agent withdrawal.Cell viabilities were increased to 167.9%,212.04%and 188.66%in MDA-MB-231 cells at48 h after withdrawal.At 72 h after withdrawal,cell viability was increased with a significant difference in three cell lines(all P values=0.000).Expressions of CD44 and ALDH1 were most prevalent for MDA-MB-231,BT-483 and MCF-7 cells.ALDH1 mRNA level was significant higher in BT-483(HER-2 overexpression cell line)than MDA-MB-231(triple negative cell line)(P=0.012).CD14 mRNA level in MCF-7 cells were significantly lower than that in MDA-MB-231 and BT-483(P=0.003,0.001).BT-483 showed significantly higher level of CD44 than MDA-MB-231 and MCF-7 cell line(P=0.013,0.020),and no significant difference was detected between MDA-MB-231 and MCF-7 breast cancer cells(P=0.955).CD90 mRNA expressions were detected in MDA-MB-231 cells and MCF-7 cells,but not in BT-483 cells.Conclusion Some malignant cells could survive in vitro and begin to proliferate again between cycles of chemotherapy.
     - 中华乳腺病杂志(电子版)
    文章来源: 万方数据
  • Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces.However,low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model.This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information.The MPCA model and the knowledge base are built based on the new subspace.Then,fault detection and isolation with the squared prediction error(SPE)statistic and the Hotelling(T2)statistic are also realized in process monitoring.When a fault occurs,fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables.For fault isolation of subspace based on the T2 statistic,the relationship between the statistic indicator and state variables is constructed,and the constraint conditions are presented to check the validity of fault isolation.Then,to improve the robustness of fault isolation to unexpected disturbances,the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation.Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system(ASCS)to prove the correctness and effectiveness of the algorithm.The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model,and sets the relationship between the state variables and fault detection indicators for fault isolation.
     - 中国机械工程学报
    文章来源: 万方数据
  • Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the mean ? and standard deviation of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero to ?+3? are regarded as "good". Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.
    FENG Shengqiang,TERASAKI Hidenri,KOMIZO Yuichi,HU Shengsun,CHEN Donggao,MA Zhihua - 中国机械工程学报(英文版)
    文章来源: 万方数据
共6页 转到