排序:
共找到3条结果
  • Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining(micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.
     - 中国机械工程学报
    文章来源: 万方数据
  • The active magnetic bearing(AMB)suspends the rotating shaft and maintains it in levitated position by applying controlled electromagnetic forces on the rotor in radial and axial directions.Although the development of various control methods is rapid,PID control strategy is still the most widely used control strategy in many applications,including AMBs.In order to tune PID controller,a particle swarm optimization(PSO)method is applied.Therefore,a comparative analysis of particle swarm optimization(PSO)algorithms is carried out,where two PSO algorithms,namely(1)PSO with linearly decreasing inertia weight(LDW-PSO),and(2)PSO algorithm with constriction factor approach(CFA-PSO),are independently tested for different PID structures.The computer simulations are carried out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE).In order to validate the performance of the analyzed PSO algorithms,one-axis and two-axis radial rotor/active magnetic bearing systems are examined.The results show that PSO algorithms are effective and easily implemented methods,providing stable convergence and good computational efficiency of different PID structures for the rotor/AMB systems.Moreover,the PSO algorithms prove to be easily used for controller tuning in case of both SISO and MIMO system,which consider the system delay and the interference among the horizontal and vertical rotor axes.
     - 中国机械工程学报
    文章来源: 万方数据
  • Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.
     - 中国机械工程学报
    文章来源: 万方数据
共1页 转到