排序:
共找到2条结果
  • KBAC:一种基于K-means的自适应聚类

    K-means聚类算法存在的主要不足之处之一在于需要用户指定聚类核数目,在一般应用场景下,用户无法给出合适的聚类核数目.另一方面,K-means聚类所具有的可并行化特点非常适合运用到云计算平台上以处理大规模数据样本的聚类任务.本文提出KBAC算法采用K-means算法作为预聚类过程并在云平台上进行实现和优化,能够自适应确定最佳聚类核数目并进行聚类.其核心思想是将样本空间聚类问题转换为图上社团发现问题.理论和实验证明,通过在云计算框架下实现K-means预聚类过程的并行化,KBAC算法能够高效地对大规模数据进行聚类,并获得高质量的聚类结果.
    徐晓旻,肖仰华 - 小型微型计算机系统
    文章来源: 万方数据
  • 基于Hadoop的封闭直方图立方

    封闭数据立方是一种有效的无损压缩技术,它去掉了数据立方中的冗余信息,从而有效降低了数据立方的存储空间、加快了计算速度,而且几乎不影响查询性能.Hadoop的MapReduce并行计算模型为数据立方的计算提供了技术支持,Hadoop的分布式文件系统HDFS为数据立方的存储提供了保障.为了节省存储空间、加快查询速度,在传统数据立方的基础上提出封闭直方图立方,它在封闭数据立方的基础上通过编码技术进一步节省了存储空间,通过建立索引加快了查询速度.Hadoop并行计算平台不论从扩展性还是均衡性都为封闭直方图立方提供了保证.实验证明:封闭直方图立方对数据立方进行了有效压缩,具有较高的查询性能,根据Hadoop的特点通过增加节点个数明显加快了计算速度.
    冷芳玲,鲍玉斌,于戈,李炳梁 - 小型微型计算机系统
    文章来源: 万方数据
共1页 转到