-
Blade vibration failure is one of the main failure modes of compressor wheel of turbocharger for vehicle application.The existing models for evaluating the reliability of blade vibration of compressor wheel are static,and can not reflect the relationship between the reliability of compressor wheel with blade vibration failure mode and the life parameter.For the blade vibration failure mode of compressor wheel of turbocharger,the reliability evaluation method is studied.Taking a compressor wheel of turbocharger for vehicle application as an example,the blade vibration characteristics and how they change with the operating parameters of turbocharger are analyzed.The failure criterion for blade vibration mode of compressor wheel is built with the Campbell diagram,and taking the effect of the dispersity of blade natural vibration frequency and randomness of turbocharger operating speed into account,time-dependent reliability models of compressor wheel with blade vibration failure mode are derived,which embody the parameters of blade natural vibration frequency,turbocharger operating speed,the blade number of compressor wheel,life index and minimum number of resonance,etc.Finally,the rule governing the reliability and failure rate of compressor wheel and the method for determining the reliable life of compressor with blade vibration is presented.A method is proposed to evaluate the reliability of compressor wheel with blade vibration failure mode time-dependently.- 中国机械工程学报文章来源: 万方数据
-
With the increasing noise pollution,low noise optimization of centrifugal pimps has become a hot topic.However,experimental study on this problem is unacceptable for industrial applications due to unsustainable cost.A hybrid method that couples computational fluid dynamics(CFD)with computational aeroacoustic software is used to predict the flow-induced noise of pumps in order to minimize the noise of centrifugal pumps in actual projects.Under Langthjem's assumption that the blade surface pressure is the main flow-induced acoustic source in centrifugal pumps,the blade surface pressure pulsation is considered in terms of the acoustical sources and simulated using CFX software.The pressure pulsation and noise distribution in the near-cutoff region are examined for the blade-passing frequency(BPF)noise,and the sound pressure level(SPL)reached peaks near the cutoff that corresponded with the pressure pulsation in this region.An experiment is performed to validate this prediction.Four hydrophones are fixed to the inlet and outlet ports of the test pump to measure the flow-induced noise from the four-port model.The simulation results for the noise are analyzed and compared with the experimental results.The variation in the calculated noise with changes in the flow agreed well with the experimental results.When the flow rate was increased,the SPL first decreased and reached the minimum near the best efficient point(BEP);it then increased when the flow rate was further increased.The numerical and experimental results confirmed that the BPF noise generated by a blade-rotating dipole roughly reflects the acoustic features of centrifugal pumps.The noise simulation method in current study has a good feasibility and suitability,which could be adopted in engineering design to predict and optimize the hydroacoustic behavior of centrifugal pumps.- 中国机械工程学报文章来源: 万方数据
-
As a redundant drive mechanism,twin ball screw feed system has the advantage of high stiffness and little yaw vibration in the feeding process,while leads to increased difficulty with vibration characteristics analysis and structure optimization.Only low-dimensional structure and dynamics parameters are considered in the existing research,the complete and effective model for predicting the table's vibrations is lacked.A three-dimensional(3D)mechanical model of twin ball screw driving table is proposed.In order to predict the vibration modes of the table quantitatively,an analytical formulation following a comprehensive approach is developed,where the drive system is modeled as a lumped mass-spring system,and the Lagrangian method is used to obtain the table's independent and coupled axial,yaw,and pitch vibration modes.The frequency variation of each mode is studied for different heights of the center of gravity,nut positions and table masses by numerical simulations.Modal experiment is carried out on the Z-axis feed table of the horizontal machining center MCH63.The results show that for each mode,the error between the estimated and the measured frequencies is less than 13%.The independent and coupled vibration modes are in accordance with the experimental results,respectively.The proposed work can serve a better understanding of the table's dynamics and be beneficial for optimizing the structure parameters of twin ball screw drive system in the design stage.- 中国机械工程学报文章来源: 万方数据
-
The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method(CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by 23.86%–31.56% and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape's the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method.BAI Bin,BAI Guangchen,LI Chao - 中国机械工程学报(英文版)文章来源: 万方数据
-
The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization.The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid.In this study,on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle,three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant.The three-dimensional flow fields in three centrifugal pumps are numerically simulated,and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller.The three pumps have nearly the same pressure distributions at the small flow rate,but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates.The pump head and efficiency are also influenced by the blade wrap angle.The highest head and efficiency are also observed for the largest angle.An experiment rig is designed and built to test the performance of the pump with the largest wrap angle.The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis.The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.- 中国机械工程学报文章来源: 万方数据
-
The 3D inverse design method,which methodology is far superior to the conventional design method that based on geometrical description,is gradually applied in pump blade design.However,no complete description about the method is outlined.Also,there are no general rules available to set the two important input parameters,blade loading distribution and stacking condition.In this sense,the basic theory and the mechanism why the design method can suppress the formation of secondary flow are summarized.And also,several typical pump design cases with different specific speeds ranging from centrifugal pump to axial pump are surveyed.The results indicates that,for centrifugal pump and mixed pump or turbine,the ratio of blade loading on the hub to that on the shroud is more than unit in the fore part of the blade,whereas in the aft part,the ratio is decreased to satisfy the same wrap angle for hub and shroud.And the choice of blade loading type depends on the balancing of efficiency and cavitation.If the cavitation is more weighted,the better choice is aft-loaded,otherwise,the fore-loaded or mid-loaded is preferable to improve the efficiency.The stacking condition,which is an auxiliary to suppress the secondary flow,can have great effect on the jet-wake outflow and the operation range for pump.Ultimately,how to link the design method to modern optimization techniques is illustrated.With the know-how design methodology and the know-how systematic optimization approach,the application of optimization design is promising for engineering.This paper summarizes the 3D inverse design method systematically.- 中国机械工程学报文章来源: 万方数据
-
Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid–structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k–ω turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.- 中国机械工程学报文章来源: 万方数据
-
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.- 中国机械工程学报文章来源: 万方数据

