排序:
共找到2条结果
  • The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.
     - 中国机械工程学报
    文章来源: 万方数据
  • Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson-θ-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincaré map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.
     - 中国机械工程学报
    文章来源: 万方数据
共1页 转到