-
Blade vibration failure is one of the main failure modes of compressor wheel of turbocharger for vehicle application.The existing models for evaluating the reliability of blade vibration of compressor wheel are static,and can not reflect the relationship between the reliability of compressor wheel with blade vibration failure mode and the life parameter.For the blade vibration failure mode of compressor wheel of turbocharger,the reliability evaluation method is studied.Taking a compressor wheel of turbocharger for vehicle application as an example,the blade vibration characteristics and how they change with the operating parameters of turbocharger are analyzed.The failure criterion for blade vibration mode of compressor wheel is built with the Campbell diagram,and taking the effect of the dispersity of blade natural vibration frequency and randomness of turbocharger operating speed into account,time-dependent reliability models of compressor wheel with blade vibration failure mode are derived,which embody the parameters of blade natural vibration frequency,turbocharger operating speed,the blade number of compressor wheel,life index and minimum number of resonance,etc.Finally,the rule governing the reliability and failure rate of compressor wheel and the method for determining the reliable life of compressor with blade vibration is presented.A method is proposed to evaluate the reliability of compressor wheel with blade vibration failure mode time-dependently.- 中国机械工程学报文章来源: 万方数据
-
Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.LUO Yang,LI Qimin,LIU Zhangxing - 中国机械工程学报(英文版)文章来源: 万方数据
-
Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail.Many studies of wheel-rail frictional heating have been devoted to the temperature field,but few literatures focus on wheel-rail thermal stress caused by frictional heating.However,the wheel-rail creepage is one of important influencing factors of the thermal stress.In this paper,a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method.The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration.The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail.The effect of the creepage on the temperature rise,thermal strain,residual stress and residual strain under wheel-rail sliding-rolling contact are investigated.The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact.Both the temperature and thermal strain of rail increase with increasing creepage.The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile.When the creepage is large,the frictional heat has a significant influence on the residual stresses and residual strains of rail.This paper develops a thermo-mechanical coupling model of wheel-rail rolling-sliding contact,and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue.- 中国机械工程学报文章来源: 万方数据

