-
足底静脉泵预防股骨骨折术后深静脉血栓形成的效果
目的 评价足底静脉泵在预防股骨骨折术后深静脉血栓形成中的临床应用效果.方法 将2010年2月至2011年7月符合纳入标准的98例股骨骨折患者分为观察组和对照组,观察组在基本预防措施和药物预防措施的基础上,应用足底静脉泵.结果 观察组患者下肢深静脉血栓发生率低于对照组(P<0.05).结论 联合应用足底静脉泵能降低股骨骨折术后深静脉血栓的发生率,且安全无副作用,值得在临床推广应用.欧阳正兰,魏玲,陈嫣红,陈伟莲,袁素琴,具翠芳 - 护理管理杂志文章来源: 万方数据 -
超声在颅脑深部血肿清除术术中的应用价值
目的 探讨超声在颅脑深部血肿清除术术中的应用价值.方法 在12例颅脑深部血肿清除采用超声定位,确定血肿大小、范围、深度、与硬膜的距离、周围及内部有无血流信号,实时动态监测血肿清除情况.结果 所有患者血肿清除率超过80%.术后随访3个月,按GOS分级,恢复良好8例,中度残疾2例,重度残疾2例,无死亡病例.结论 术中超声操作简便,定位精确,在减少手术损伤、提高患者术后生活质量方面具有重要的作用.陈红兵,岑波,谭安娜,李红玲 - 中国超声医学杂志文章来源: 万方数据 -
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.- 中国机械工程学报文章来源: 万方数据

