排序:
共找到6条结果
  • Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces.However,low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model.This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information.The MPCA model and the knowledge base are built based on the new subspace.Then,fault detection and isolation with the squared prediction error(SPE)statistic and the Hotelling(T2)statistic are also realized in process monitoring.When a fault occurs,fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables.For fault isolation of subspace based on the T2 statistic,the relationship between the statistic indicator and state variables is constructed,and the constraint conditions are presented to check the validity of fault isolation.Then,to improve the robustness of fault isolation to unexpected disturbances,the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation.Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system(ASCS)to prove the correctness and effectiveness of the algorithm.The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model,and sets the relationship between the state variables and fault detection indicators for fault isolation.
     - 中国机械工程学报
    文章来源: 万方数据
  • In the prediction of active vibration isolation performance,control force requirements were ignored in previous work.This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators.The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated.Distributed parameter models are developed to analyze the system response,and to produce a transfer matrix for the design of an integrated passive-active isolation system.Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed.The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts.Vertical and transverse forces as well as a rotational moment are applied at the rigid body,and resonances excited in elastic mounts and the supporting plate are analyzed.The overall isolation performance is evaluated by numerical simulation.The simulation results are then compared with those obtained using unconstrained control strategies.In addition,the effects of waves in elastic mounts are analyzed.It is shown that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range,but also require large control force amplitudes to control excited vibration modes of the system.Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs.In the frequency range in which rigid body modes are present,the control strategies can only achieve 5–10 dB power transmission reduction,when control forces are constrained to be the same order of the magnitude as the primary vertical force.The resonances of the elastic mounts result in a notable increase of power transmission in high frequency range and cannot be attenuated by active control.The investigation provides a guideline for design and evaluation of active vibration isolation systems.
     - 中国机械工程学报
    文章来源: 万方数据
  • The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.
     - 中国机械工程学报
    文章来源: 万方数据
  • Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the mean ? and standard deviation of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero to ?+3? are regarded as "good". Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.
    FENG Shengqiang,TERASAKI Hidenri,KOMIZO Yuichi,HU Shengsun,CHEN Donggao,MA Zhihua - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers.However,obtaining an optimized sensor set of these systems,which is a prerequisite for fault diagnosis,remains a major challenge.Available literature suggests that the configuration of sensors in these systems is presently dependent on the knowledge and engineering experiences of designers,which may lead to insufficient or redundant development of various sensors.In this paper,the optimization of sensor sets is addressed by using the signed digraph(SDG)method.The method is modified for use in braking systems by the introduction of an effect-function method to replace the traditional quantitative methods.Two criteria are adopted to evaluate the capability of the sensor sets,namely,observability and resolution.The sensors configuration method of braking system is proposed.It consists of generating bipartite graphs from SDG models and then solving the set cover problem using a greedy algorithm.To demonstrate the improvement,the sensor configuration of the HP2008 braking system is investigated and fault diagnosis on a test bench is performed.The test results show that SDG algorithm can improve single-fault resolution from 6 faults to 10 faults,and with additional four brake cylinder pressure(BCP)sensors it can cover up to 67 double faults which were not considered by traditional fault diagnosis system.SDG methods are suitable for reducing redundant sensors and that the sensor sets thereby obtained are capable of detecting typical faults,such as the failure of a release valve.This study investigates the formal extension of the SDG method to the sensor configuration of braking system,as well as the adaptation supported by the effect-function method.
     - 中国机械工程学报
    文章来源: 万方数据
  • 基亏"风险累积"效应的城市轨道交通车辆维修风险分析

    依据故障树分析法(VIA)原理,对城市轨道交通车辆维修的安全故障因素进行了分析.城市轨道交通车辆维修的工艺过程存在着安全"风险累积"效应;维修后车辆的营运过程存在着"风险扩散"效应.在分析目前城市轨道交通车辆维修面临挑战的基础上,提出了风险应急和风险控制的相应对策.
    黄立新,黄正 - 城市轨道交通研究
    文章来源: 万方数据
共1页 转到