-
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.- 中国机械工程学报文章来源: 万方数据
-
In design of flexure mechanism, diminishing the parasitic-motion is a key point to improve the accuracy. However, most of existing topics concentrate on improving the accuracy of linear-motion flexure mechanisms via compensating the parasitic error, but few research the multi-dimensional flexure mechanisms. A general design principle and method for high-precision flexure mechanisms based on the parasitic-motion compensation is presented, and the proposed method can compensate the parasitic rotation in company with translation, or the parasitic translation in company with rotation, or both. The crucial step for the method is that the parasitic motion of a flexure mechanism is formulated and evaluated in terms of its compliance. The overall compliance matrix of a general flexure mechanism is formulated by using screw theory firstly, then the criteria for the parasitic motions is introduced by analyzing the characteristics of the resultant compliance matrix as well as with aid of the concept of instantaneous rotation center. Subsequently, a compliance-based compensation approach for reducing parasitic-motion is addressed as the most important part. The design principles and procedure are further discussed to help with improving the accuracy of flexure mechanisms, and case studies are provided to illustrate this method. Finally, an analytical verification is provided to demonstrate that the symmetry design philosophy widely used in flexure design can effectively improve accuracy in terms of the proposed method. The proposed compensation method can be well used to diminish the parasitic-motion of multi-dimensional flexure mechanisms.- 中国机械工程学报文章来源: 万方数据
-
Straight-line compliant mechanisms are important building blocks to design a linear-motion stage,which is very useful in precision applications.However,only a few configurations of straight-line compliant mechanisms are applicable.To construct more kinds of them,an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed,which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint.An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution.To illustrate and verify the proposed method,two kinds of flexural joints,cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF)pivot are used to reconstruct straight-line flexural mechanisms.Their performances are obtained by analytic and FEA method respectively.The comparisons of the results show the accuracy of the approach.Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000within 5 mm displacement.This can lead to a new way to design,analyze or optimize straight-line flexure mechanisms.- 中国机械工程学报文章来源: 万方数据
-
混杂纤维增强木梁的受弯性能试验研究
选用碳纤维(CF)、玻璃纤维(GF)和高强玻璃纤维(SGF)为增强材料,制作CF,CF/GF和CF/SGF层间组合混杂纤维增强木梁,并对其受弯性能进行了试验研究,同时分析了该木梁的破坏形态和破坏机理,讨论了其荷载-位移特征、极限承载力和延性.结果表明:与单一CF增强相比,合理匹配混杂纤维增强复合材料(HFRP)可显著提高木梁的承载力和延性.提出了HFRP增强木梁的极限承载力计算方法.杨友龙,熊光晶 - 建筑材料学报文章来源: 万方数据

