-
地下水数值模拟模型识别和验证方法与标准
地下水数值模拟是目前定量研究地下水的重要手段.分析了数值法求解地下水流数学模型的基本步骤,对于采用试估一校正法进行模型识别率定和验证过程中,在遵循模型的识别率定和验证的基本要求和四个基本原则基础上,对于如何评价模型率定和验证的效果、定量分析模型精度、以及达到模型可实际应用的要求,总结众多地下水数值模型调试的经验,提出了地下水数值模型识别率定和验证的定量评价标准.李全友,任印国,程忠良 - 南水北调与水利科技文章来源: 万方数据 -
Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k–ε, renormalization group k–ε, and Spalart–Allmars models, the Realizable k–ε model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.- 中国机械工程学报文章来源: 万方数据
-
应用MATLAB求解DMF在NKA-Ⅱ树脂上的吸附数学模型
考虑非线性吸附平衡关系、吸附剂内外传质阻力以及表面扩散系数为固相浓度的函数的基础上,建立间歇搅拌吸附槽中大孔吸附树脂吸附DMF的表面扩散模型,由于该模型为高度非线性的偏微分方程,只能采用数值方法求解.因此,对MATLAB中pdepe函数进行适当修改,并针对吸附表面扩散模型边界条件的特点建立边界条件函数,使其可应用于具有Robin边界条件的吸附数学模型的求解.当间歇搅拌吸附槽的搅拌速度为100rpm,温度为298K条件下,应用修改后的pdepe函数结合优化工具箱求解吸附表面扩散模型,获得有效表面扩散系数Dn=1.04*10^-10m^2/s和液相传质系数Kp=9.60*10^-6m/s;模型计算得到的吸附速率与实验测定结果的均方根误差为ε=0.008.结果表明:DMF在NKA-Ⅱ树脂上吸附动力学过程与吸附表面扩散模型吻合良好,应用修改后的pdepe函数可方便地求解具有Robin边界条件的表面吸附模型,结果准确可靠.叶长燊,李燕虎,林诚,付杰 - 计算机与应用化学文章来源: 万方数据 -
The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization.The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid.In this study,on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle,three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant.The three-dimensional flow fields in three centrifugal pumps are numerically simulated,and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller.The three pumps have nearly the same pressure distributions at the small flow rate,but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates.The pump head and efficiency are also influenced by the blade wrap angle.The highest head and efficiency are also observed for the largest angle.An experiment rig is designed and built to test the performance of the pump with the largest wrap angle.The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis.The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.- 中国机械工程学报文章来源: 万方数据
-
Several typical flexible pneumatic actuators(FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint(FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook's law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ's bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint's statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ's structure design.SHAO Tiefeng,ZHANG Libin,BAO Guanjun,LUO Xinyuan,YANG Qinghua - 中国机械工程学报(英文版)文章来源: 万方数据
-
Longitudinal vibration,torsional vibration and their coupled vibration are the main vibration modes of the crankshaft-sliding bearing system.However,these vibrations of the propeller-crankshaft-sliding bearing system generated by the fluid exciting force on the propeller are much more complex.Currently,the torsional and longitudinal vibrations have been studied separately while the research on their coupled vibration is few,and the influence of the propeller structure to dynamic characteristics of a crankshaft has not been studied yet.In order to describe the dynamic properties of a crankshaft accurately,a nonlinear dynamic model is proposed taking the effect of torsional-longitudinal coupling and the variable inertia of propeller,connecting rod and piston into account.Numerical simulation cases are carried out to calculate the response data of the system in time and frequency domains under the working speed and over-speed,respectively.Results of vibration analysis of the propeller and crankshaft system coupled in torsional and longitudinal direction indicate that the system dynamic behaviors are relatively complicated especially in the components of the frequency response.For example,the 4 times of an exciting frequency acting on the propeller by fluid appears at 130 r/min,while not yield at 105 r/min.While the possible abnormal vibration at over-speed just needs to be vigilant.So when designing the propeller shafting used in marine diesel engines,strength calculation and vibration analysis based only on linear model may cause great errors and the proposed research provides some references to design diesel engine propeller shafting used in large marines.- 中国机械工程学报文章来源: 万方数据
-
新疆温宿县地下水水量均衡计算
以阿克苏地区水文地质普查报告和温宿县地下水资源开发利用规划等相关资料及实地调查、测量等工作取得的原始资料为基础,说明了研究区的水文地质条件,确定计算研究区的地下水水量均衡方程和计算参数,利用搜集到相关数据进行地下水水量均衡计算,计算结果表明:该区地下水补给量略大于排泄量,主要的补给源为河流渠系的入渗和山前侧向人渗;主要排泄量为向下游的排泄量和潜入蒸发量.何向东 - 南水北调与水利科技文章来源: 万方数据 -
Most researches on transient fuel control of port fuel injection S.I. engine are carried out from the perspective of advanced mathematical theories. When it comes to practical control, there exist many limitations although they are more intelligent. In order to overcome the fuel wetting effect of PFI engine, the application-oriented transient fuel control is studied by analyzing the key parameters which are closely related with the engine transient characteristics. Both validity and simplicity are taken into consideration. Based on the fuel wall-wetting theory and popular fuel compensation strategy, short-term transient fuel(STF) and long-term transient fuel(LTF), as well as their individual decay approaches, are introduced. STF is to compensate the drastic fuel film loss caused by sudden throttle change, while the function of LTF is to compensate the fuel film loss by manifold air pressure(p) fluctuation. Each of them has their respective pros and cons. The engine fuel mass and air mass are also calculated for air-fuel ratio(AFR) according to ideal gas state equation and empirical equations. The vehicle acceleration test is designed for model validation. The engine experiences several mild and heavy accelerations corresponding to the gear change during vehicle acceleration. STF and LTF control are triggered reliably. The engine transient fuel control simulation adopts the same inputs as the test to ensure consistency. The logged test data are used to check the model output. The results show that the maximum fuel pulse width(FPW) error reaches 2 ms, and it only occurs under engine heavy acceleration condition. The average FPW error is 0.57 ms. The results of simulation and test are close overall, which indicates the accuracy of steady and transient fuel. The proposed research provides an efficient approach not only suitable for practical engineering application, but also for AFR prediction, fuel consumption calculation, and further studies on emission control.- 中国机械工程学报文章来源: 万方数据
-
The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.- 中国机械工程学报文章来源: 万方数据
-
硅油乳状液体系搅拌槽内混合过程的数值模拟
在FLUENT6-3.26软件平台上,采用多重参考系和标准κ-ε湍流模型、SIMPLE压力一速度耦合算法对硅油乳状液体系搅拌槽内流场进行模拟.模拟以中粘乳状液为物系,采用0.0465m半径的搅拌槽及框式搅拌浆,在和实验相同的1200r·min^-1转速的流场进行模拟.计算了上述条件下的速度场和浓度场.同时采用数值模拟方法研究了在不同示踪剂监控点的混合规律,并对模拟结果进行可视化定量研究分析.模拟结果表明,混合过程由搅拌槽内流体流动控制,混合时间与示踪剂监控点位置密切相关.倪邦庆,王秋实,范明明 - 计算机与应用化学文章来源: 万方数据

