-
Now the optimization strategies for power distribution are researched widely,and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown.Thus if the actual driving condition deviates from the scheduled driving cycle,the effect of optimal results will be declined greatly.Therefore,the instantaneous optimization strategy carried out on-line is studied in this paper.The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established.The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy.The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically.The optimization is calculated by the adaptive simulated annealing(ASA)algorithm and realized on-line by the radial basis function(RBF)-based similar models.The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented.The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle(HEV)observably.Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution.The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency,thus it has good application foreground for the power distribution of power-split HEV.- 中国机械工程学报文章来源: 万方数据
-
Synthesis and Characterization of Layered Perovskite-type Organic-inorganic Hybrids (R-NH_3)_2(CH_3NH_3)Pb_2I_7
Layered organic-inorganic hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7 (where R=C12H25,C6H5C2H4) were synthesized by reactions in solution. The influences of the solvents and the reactant ratio on the structures of the products were investigated. The structures and the properties of the hybrids were characterized using X-ray diffraction (XRD) and ultraviolet and visible (UV) adsorption spectra. For comparing with the bilayer perovskite hybrids in structure and band gap magnitude, the hybrids containing monolayer perovskite (R-NH3)2PbI4 were also synthesized and characterized. The results demonstrate that the thickness of inorganic layer has obvious effect on the tunneling magnitude of the band gap but the organic part can be micro actuator of band gap.郭丽玲 - 武汉理工大学学报(材料科学版)(英文版)文章来源: 万方数据 -
Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.LUO Yang,LI Qimin,LIU Zhangxing - 中国机械工程学报(英文版)文章来源: 万方数据
-
基于nRF905和GPRS的智能家居用电监测系统
设计并实现了一种智能家居无线用电监测系统.该系统由具有无线射频信号收发功能的智能无线电参数测量插座、带有nRF905和GPRS模块的互动监测终端和家居远程监控中心组成.该用电监测系统既能测量电能参数以及电能消耗,同时又能根据现行家用电器运行状态给出科学合理的运行策略来控制家居中每个电器.系统可以在很大程度上提高家居中的电能利用率,并可以延长家用电器的使用寿命.董宇,杨强,颜文俊 - 电子技术应用文章来源: 万方数据 -
The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.- 中国机械工程学报文章来源: 万方数据
-
混杂纤维增强木梁的受弯性能试验研究
选用碳纤维(CF)、玻璃纤维(GF)和高强玻璃纤维(SGF)为增强材料,制作CF,CF/GF和CF/SGF层间组合混杂纤维增强木梁,并对其受弯性能进行了试验研究,同时分析了该木梁的破坏形态和破坏机理,讨论了其荷载-位移特征、极限承载力和延性.结果表明:与单一CF增强相比,合理匹配混杂纤维增强复合材料(HFRP)可显著提高木梁的承载力和延性.提出了HFRP增强木梁的极限承载力计算方法.杨友龙,熊光晶 - 建筑材料学报文章来源: 万方数据 -
功能化TiO2纳米管改性聚偏氟乙烯杂化膜的结构与性能
将功能化TiO2纳米管(FTNT)均匀分散在聚偏氟乙烯(PVDF)铸膜液中,利用相转化法制备PVDF/FTNT杂化膜,通过扫描电镜(SEM)、接触角测定、过滤实验和污染性测试等研究了其微结构、分离性和耐污染性能等,并考察膜污染后有效的清洗方法.结果表明,添加FTNT的杂化膜具有不同的微结构与性能,当添加1% FTNT时,杂化膜皮层变薄、微孔数增多,并呈现出最优化的水通量、亲水性、耐压性和抗污染能力等,而对腐殖酸(HA)溶液的截留率略有提高.采用0.01 mol/L的NaOH溶液碱洗和太阳光/水的绿色清洗工艺均能实现膜性能的恢复,而采用后者清洗的杂化膜通量恢复率可达到90%以上.宋雪,文晨,孙炜,肖长发 - 膜科学与技术文章来源: 万方数据

