-
The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.- 中国机械工程学报文章来源: 万方数据
-
Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it's highly susceptible to corrosion environmental impacts,but the experimental research about it are few.In this paper,three kinds of impregnated graphite samples are prepared with different degree of graphitization,the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted.The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition.While in a corrosive environment(samples are soaked N2O4),the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low.If the degree of graphitization increase,the friction coefficient and amount of wear of samples increase too,the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30MPa?m/s.The impregnated graphite,which friction coefficient is stable and graphitization degree is in mid level,such#2,is more appropriate to have a work in the corrosion conditions.In this paper,preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied,the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials,and also provide some important design parameters for contact seal works in a corrosive environment.- 中国机械工程学报文章来源: 万方数据
-
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic compliance&load-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.- 中国机械工程学报文章来源: 万方数据
-
Wear is a major factor of disc cutters' failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians' experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters' life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.ZHANG Zhaohuang,MENG Liang,SUN Fei - 中国机械工程学报(英文版)文章来源: 万方数据
-
The accurate measurement on the compressibility and thermal expansion coefficients of density standard liquid at 2329kg/m3(DSL-2329) plays an important role in the quality control for silicon single crystal manufacturing. A new method is developed based on hydrostatic suspension principle in order to determine the two coefficients with high measurement accuracy. Two silicon single crystal samples with known density are immersed into a sealed vessel full of DSL-2329. The density of liquid is adjusted with varying liquid temperature and static pressure, so that the hydrostatic suspension of two silicon single crystal samples is achieved. The compression and thermal expansion coefficients are then calculated by using the data of temperature and static pressure at the suspension state. One silicon single crystal sample can be suspended at different state, as long as the liquid temperature and static pressure function linearly according to a certain mathematical relationship. A hydrostatic suspension experimental system is devised with the maximal temperature control error ±50 μK; Silicon single crystal samples can be suspended by adapting the pressure following the PID method. By using the method based on hydrostatic suspension principle, the two key coefficients can be measured at the same time, and measurement precision can be improved due to avoiding the influence of liquid surface tension. This method was further validated experimentally, where the mixture of 1, 2, 3-tribromopropane and 1,2-dibromoethane is used as DSL-2329. The compressibility and thermal expansion coefficients were measured, as 8.5′10–4 K–1 and 5.4′10–10 Pa–1, respectively.- 中国机械工程学报文章来源: 万方数据
-
Most researches on the static performance of stiffened panel joined by friction stir welding(FSW) mainly focus on the compression stability rather than shear stability. To evaluate the potential of FSW as a replacement for traditional rivet fastening for stiffened panel assembly in aviation application, finite element method(FEM) is applied to compare compression and shear stability performances of FSW stiffened panels with stability performances of riveted stiffened panels. FEMs of 2024-T3 aluminum alloy FSW and riveted stiffened panels are developed and nonlinear static analysis method is applied to obtain buckling pattern, buckling load and load carrying capability of each panel model. The accuracy of each FEM of FSW stiffened panel is evaluated by stability experiment of FSW stiffened panel specimens with identical geometry and boundary condition and the accuracy of each FEM of riveted stiffened panel is evaluated by semi-empirical calculation formulas. It is found that FEMs without considering weld-induced initial imperfections notably overestimate the static strengths of FSW stiffened panels. FEM results show that, buckling patterns of both FSW and riveted compression stiffened panels represent local buckling of plate between stiffeners. The initial buckling waves of FSW stiffened panel emerge uniformly in each plate between stiffeners while those of riveted panel mainly emerge in the mid-plate. Buckling patterns of both FSW and riveted shear stiffened panels represent local buckling of plate close to the loading corner. FEM results indicate that, shear buckling of FSW stiffened panel is less sensitive to the initial imperfections than compression buckling. Load carrying capability of FSW stiffened panel is less sensitive to the initial imperfections than initial buckling. It can be concluded that buckling loads of FSW panels are a bit lower than those of riveted panels whereas carrying capabilities of FSW panels are almost equivalent to those of riveted panels with identical geometries. Finite element method for simulating static performances of FSW and riveted stiffened panels is proposed and evaluated and some beneficial conclusions are obtained, which offer useful references for analysis and application of FSW to replace rivet fastening in aviation stiffened panel assembly.- 中国机械工程学报文章来源: 万方数据
-
Now the optimization strategies for power distribution are researched widely,and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown.Thus if the actual driving condition deviates from the scheduled driving cycle,the effect of optimal results will be declined greatly.Therefore,the instantaneous optimization strategy carried out on-line is studied in this paper.The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established.The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy.The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically.The optimization is calculated by the adaptive simulated annealing(ASA)algorithm and realized on-line by the radial basis function(RBF)-based similar models.The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented.The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle(HEV)observably.Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution.The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency,thus it has good application foreground for the power distribution of power-split HEV.- 中国机械工程学报文章来源: 万方数据
-
The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.WANG Wenhui,LU Xiaolu,CUI Yi,DENG Kangyao - 中国机械工程学报(英文版)文章来源: 万方数据
-
氩流体冷凝过程的分子动力学模拟
冷凝系数为冷凝流率与碰撞流率之比,是气体冷凝过程的重要性质.本文采用分子动力学方法,探讨了不同温度(95.5、104-3、113-3、123.2)K下,氩流体气液两相平衡体系中气相的冷凝过程.模拟得到了氩流体气液相主体范围、Gibbs界面位置及界面厚度;并分别以气相主体与界面区的分界面|z8|及Gibbs界面作为碰撞界面,统计得到了氩流体的冷凝系数,并与文献值进行了比较.模拟结果表明,在相同温度条件下,以Gibbs界面为碰撞界面得到的碰撞粒子数目明显高于以|z8|为碰撞界面得到的碰撞粒子数目.当采用|z8|界面作为碰撞界面时,冷凝系数出随着温度的变化规律与文献值一致,均随着温度的升高而降低,变化范围在0.822与0.596之间;但以Gibbs界面作为碰撞界面时,所得冷凝系数口,基本上与温度无关,其值在0.335左右,且a2明显小于a1.霍佳捷,张宇,雷广平,王宝和 - 计算机与应用化学文章来源: 万方数据 -
水泥土无侧向抗压强度试验分析与研究
通过水泥土室内试验,研究了水泥的掺入量对土的最优含水率及最大干密度的影响,以及对水泥土无侧限抗压强度的影响.结果表明,水泥掺入量不同的水泥土的最优含水率和最大干密度相差不大,水泥土的强度随着水泥掺入量增加而增大.王铁强,张昀保,郎超,李学军 - 南水北调与水利科技文章来源: 万方数据

