-
Common compliant joints generally have limited range of motion,reduced fatigue life and high stress concentration.To overcome these shortcomings,periodically corrugated cantilever beam is applied to design compliant joints.Basic corrugated beam unit is modeled by using pseudo-rigid-body method.The trajectory and deformation behavior of periodically corrugated cantilever beam are estimated by the transformation of coordinate and superposition of the deformation of corrugated beam units.Finite element analysis(FEA)is carried out on corrugated cantilever beam to estimate the accuracy of the pseudo-rigid-body model.Results show that the kinetostatic behaviors obtained by this method,which has a relative error less than 6%,has good applicability and corrugated cantilever beam has the characteristics of a large range of motion and high mechanical strength.The corrugated cantilever beam is then applied to design a flexible rotational joint to obtain a larger angle output.The paper proposes a pseudo-rigid-body model for corrugated cantilever beam and designed a flexible rotational joint with large angle output.- 中国机械工程学报文章来源: 万方数据
-
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming.However,convergence rate of iterative methods is difficult to improve greatly.To increase the springback compensate speed of designing age forming mold,process of calculating springback for a certain mold with finite element method is analyzed.Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method.The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB.Three rectangular integrated panels of dimensions 710 mm′750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies.The algorithm is used to compute mold contours for the panels with cylinder,sphere and saddle contours respectively and it takes 57%,22%and 33%iterations as compared to that of displacement adjustment(DA)method.At the end of iterations,maximum deviations on the three panels are 0.618 4 mm,0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method(0.740 8 mm,0.740 8 mm and 0.713 7 mm respectively).In following experimental verification,mold contour for another integrated panel with 400 mm*380 mm size is designed by the algorithm.Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise.Deviation between measuring results and the panel's design contour is less than 1 mm.Finally,the iterations with different mesh sizes(40 mm,35mm,30 mm,25 mm,20 mm)in finite element models are compared and found no considerable difference.Another possible compensation method,Broyden-Fletcher-Shanmo method,is also presented based on the solving nonlinear functions idea.The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel.It only takes 50%iterations compared to that of DA.The proposed method can serve a faster mold contour compensation method for sheet metal forming.- 中国机械工程学报文章来源: 万方数据
-
多年调节水库兴利调节计算分析
多年调节水库调节性能较高,其兴利库容对整个工程规模的确定至关重要.以贵州省麻江县上寨水库多年调节水库为例,通过对水库的径流系列进行分析,采用时历法和数理统计法对水库的兴利库容进行计算,对该水库的兴利库容计算结果进行了评价,并对多年调节水库兴利调节中采用的基础资料及计算方法进行了简要分析.吕海军 - 南水北调与水利科技文章来源: 万方数据 -
Steering control of a capsule robot in curve environment by magnetic navigation is not yet solved completely.A petal-shaped capsule robot with less steering resistance based on multiple wedge effects is presented,and an optimization method with two processes for determining the orientation of a pre-applied universal magnetic spin vector is proposed.To realize quick and non-contact steering swimming,a fuzzy comprehensive evaluation method for optimizing the steering driving angle is presented based on two evaluation indexes including the average steering speed and the average steering trajectory deviation,achieving the initial optimal orientation of a universal magnetic spin vector.To further reduce robotic magnetic vibration,a main target method for optimizing its final orientation,which is used for fine adjustment,is employed under the constrains of the magnetic moments.Swimming experimental results in curve pipe verified the effectiveness of the optimization method,which can be effectively used to realize non-contact steering swimming of the petal-shaped robot and reduce its vibration.- 中国机械工程学报文章来源: 万方数据
-
Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves,which leads to the complex structure and manufacturing process of pump channel and chamber bottom.Furthermore,position fixed valves with respect to the inlet and outlet also makes the adjustability and controllability of flow rate worse.In order to overcome these shortcomings,this paper puts forward a novel implantable structure of valve-less piezoelectric pump with hemisphere-segments in the pump chamber.Based on the theory of flow around bluff-body,the flow resistance on the spherical and round surface of hemisphere-segment is different when fluid flows through,and the macroscopic flow resistance differences thus formed are also different.A novel valve-less piezoelectric pump with hemisphere-segment bluff-body(HSBB)is presented and designed.HSBB is the no-moving part valve.By the method of volume and momentum comparison,the stress on the bluff-body in the pump chamber is analyzed.The essential reason of unidirectional fluid pumping is expounded,and the flow rate formula is obtained.To verify the theory,a prototype is produced.By using the prototype,experimental research on the relationship between flow rate,pressure difference,voltage,and frequency has been carried out,which proves the correctness of the above theory.This prototype has six hemisphere-segments in the chamber filled with water,and the effective diameter of the piezoelectric bimorph is 30mm.The experiment result shows that the flow rate can reach 0.50 mL/s at the frequency of 6 Hz and the voltage of 110 V.Besides,the pressure difference can reach 26.2 mm H2O at the frequency of 6 Hz and the voltage of 160 V.This research proposes a valve-less piezoelectric pump with hemisphere-segment bluff-body,and its validity and feasibility is verified through theoretical analysis and experiment.- 中国机械工程学报文章来源: 万方数据
-
The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, the ride comfort according to the common principle of probability and statistics and simple binary logic is unable to reflect these uncertainties. The random fuzzy evaluation model from people subjective response to vibration is adopted in the paper, these uncertainties are analyzed from the angle of psychological physics. Discussing the traditional evaluation of ride comfort during vehicle vibration, a fuzzily random evaluation model on the basis of annoyance rate is proposed for the human body's subjective response to vibration, with relevant fuzzy membership function and probability distribution given. A half-car four degrees of freedom suspension vibration model is described, subject to irregular excitations from the road surface, with the aid of software Matlab/Simulink. A new kind of evaluation method for ride comfort of vehicles is proposed in the paper, i.e., the annoyance rate evaluation method. The genetic algorithm and neural network control theory are used to control the system. Simulation results are obtained, such as the comparison of comfort reaction to vibration environments between before and after control, relationship of annoyance rate to vibration frequency and weighted acceleration, based on ISO2631/1(1982), ISO 2631–1(1997) and annoyance rate evaluation method, respectively. Simulated assessment results indicate that the proposed active suspension systems prove to be effective in the vibration isolation of the suspension system, and the subjective response of human being can be promoted from very uncomfortable to a little uncomfortable. Furthermore, the novel evaluation method based on annoyance rate can further estimate quantitatively the number of passengers who feel discomfort due to vibration. A new analysis method of vehicle comfort is presented.- 中国机械工程学报文章来源: 万方数据
-
Vehicle mass is an important parameter in vehicle dynamics control systems.Although many algorithms have been developed for the estimation of mass,none of them have yet taken into account the different types of resistance that occur under different conditions.This paper proposes a vehicle mass estimator.The estimator incorporates road gradient information in the longitudinal accelerometer signal,and it removes the road grade from the longitudinal dynamics of the vehicle.Then,two different recursive least square method(RLSM)schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions.A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters.The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations.The modification of the algorithm is also discussed to improve the result of the mass estimation.Experiment data on a sphalt road,plastic runway,and gravel road and on sloping roads are used to validate the estimation algorithm.The adaptability of the algorithm is improved by using data collected under several critical operating conditions.The experimental results show the error of the estimation process to be within 2.6%,which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications.This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.- 中国机械工程学报文章来源: 万方数据
-
Natural frequency characteristics of a thin-walled multiple layered cylindrical shell under lateral pressure are studied.The multiple layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The multiple layered shell equations with lateral pressure are established based on Love's shell theory.The governing equations of motion with lateral pressure are employed by using energy functional and applying the Ritz method.The boundary conditions represented by end conditions of the multiple layered cylindrical shell are simply supported-clamped(SS-C),free-clamped(F-C)and simply supported-free(SS-F).The influence of different lateral pressures,different thickness to radius ratios,different length to radius ratios and effect of the asymmetric boundary conditions on natural frequency characteristics are studied.It is shown that the lateral pressure has effect on the natural frequency of multiple layered cylindrical shell and causes the natural frequency to increase.The natural frequency of the developed multilayered cylindrical shell is validated by comparing with those in the literature.The proposed research provides an effective approach for vibration analysis shell structures subjected to lateral pressure with an energy method.- 中国机械工程学报文章来源: 万方数据
-
The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation. A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-α integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system. Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.- 中国机械工程学报文章来源: 万方数据
-
衡水湖水体富营养化状况及防治措施
衡水湖是华北平原具有独特自然景观的国家级湿地和鸟类自然保护区,富营养化问题是衡水湖面临的一个主要问题.通过对衡水湖水体的主要营养物质氮、磷等水质参数的影响及循环特征进行了分析,对水体的营养状况进行了评价,得出结论:衡水湖水体营养状况为富营养,但基本呈逐年减轻的趋势,并提出了富营养化治理措施.周振昉 - 南水北调与水利科技文章来源: 万方数据

