排序:
共找到10条结果
  • After more than half a century of intense efforts,the development of exoskeleton has seen major advances,and several remarkable achievements have been made.Reviews of developing history of exoskeleton are presented,both in active and passive categories.Major models are introduced,and typical technologies are commented on.Difficulties in control algorithm,driver system,power source,and man-machine interface are discussed.Current researching routes and major developing methods are mapped and critically analyzed,and in the process,some key problems are revealed.First,the exoskeleton is totally different from biped robot,and relative studies based on the robot technologies are considerably incorrect.Second,biomechanical studies are only used to track the motion of the human body,the interaction between human and machines are seldom studied.Third,the traditional developing ways which focused on servo-controlling have inborn deficiency from making portable systems.Research attention should be shifted to the human side of the coupling system,and the human ability to learn and adapt should play a more significant role in the control algorithms.Having summarized the major difficulties,possible future works are discussed.It is argued that,since a distinct boundary cannot be drawn in such strong-coupling human-exoskeleton system,the more complex the control system gets,the more difficult it is for the user to learn to use.It is suggested that the exoskeleton should be treated as a simple wearable tool,and downgrading its automatic level may be a change toward a brighter research outlook.This effort at simplification is definitely not easy,as it necessitates theoretical supports from fields such as biomechanics,ergonomics,and bionics.
     - 中国机械工程学报
    文章来源: 万方数据
  • Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
     - 中国机械工程学报
    文章来源: 万方数据
  • Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism.Assuming the constraints between the supporting feet and the ground with hinges,the supporting legs and the hexapod body are taken as a parallel mechanism,and each swing leg is regarded as a serial manipulator.The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground.Locomotion performance can be got by analyzing these equivalent mechanisms.The kinematics of the whole robotic system is established,and the influence of foothold position on the workspace of robot body is analyzed.A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle.Referring to service region and service sphere,weight service sphere and weight service region are put forward to evaluate the dexterity of robot body.The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated.Simulation shows when the foothold offset goes up to 174 mm,the dexterity of robot body achieves its maximum value 0.164 4 in mixed gait.The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot,and provide new approach to determine the stride length,body height,footholds in gait planning of multi-legged robot.
     - 中国机械工程学报
    文章来源: 万方数据
  • Existing biped robots mainly fall into two categories: robots with left and right feet and robots with upper and lower feet. The load carrying capability of a biped robot is quite limited since the two feet of a walking robot supports the robot alternatively during walking. To improve the load carrying capability, a novel biped walking robot is proposed based on a 2-UPU+2-UU parallel mechanism. The biped walking robot is composed of two identical platforms(feet) and four limbs, including two UPU(universal-prismatic-universal serial chain) limbs and two UU limbs. To enhance its terrain adaptability like articulated vehicles, the two feet of the biped walking robot are designed as two vehicles in detail. The conditions that the geometric parameters of the feet must satisfy are discussed. The degrees-of-freedom of the mechanism is analyzed by using screw theory. Gait analysis, kinematic analysis and stability analysis of the mechanism are carried out to verify the structural design parameters. The simulation results validate the feasibility of walking on rugged terrain. Experiments with a physical prototype show that the novel biped walking robot can walk stably on smooth terrain. Due to its unique feet design and high stiffness, the biped walking robot may adapt to rugged terrain and is suitable for load-carrying.
     - 中国机械工程学报
    文章来源: 万方数据
  • Most of current running quadruped robots have similar construction: a stiff body and four compliant legs. Many researches have indicated that the stiff body without spine motion is a main factor in limitation of robots' mobility. Therefore, investigating spine motion is very important to build robots with better mobility. A planar quadruped robot is designed based on cheetahs' morphology. There is a spinal driving joint in the body of the robot. When the spinal driving joint acts, the robot has spine motion; otherwise, the robot has not spine motion. Six group prototype experiments with the robot are carried out to study the effect of spine motion on mobility. In each group, there are two comparative experiments: the spinal driving joint acts in one experiment but does not in the other experiment. The results of the prototype experiments indicate that the average speeds of the robot with spine motion are 8.7%–15.9% larger than those of the robot without spine motion. Furthermore, a simplified sagittal plane model of quadruped mammals is introduced. The simplified model also has a spinal driving joint. Using a similar process as the prototype experiments, six group simulation experiments with the simplified model are conducted. The results of the simulation experiments show that the maximum rear leg horizontal thrusts of the simplified mode with spine motion are 68.2%–71.3% larger than those of the simplified mode without spine motion. Hence, it is found that spine motion can increase the average running speed and the intrinsic reason of speed increase is the improvement of the maximum rear leg horizontal thrust.
    CHEN Dongliang,LIU Qi,DONG Litao,WANG Hong,ZHANG Qun - 中国机械工程学报(英文版)
    文章来源: 万方数据
  •  - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • Quadruped robots consume a lot of energy,which is one of the factors restricting their application.Energy efficiency is one of the key evaluating indicators for walking robots.The relationship between energy and elastic elements of walking robots have been studied,but different walking gait patterns and contact status have important influences on locomotion energy efficiency,and the energy efficiency considering the foot-end trajectory has not been reported.Therefore,the energy consumption and energy efficiency of quadruped robot with trot gait and combined cycloid foot trajectory are studied.The forward and inverse kinematics of quadruped robot is derived.The combined cycloid function is proposed to generate horizontal and vertical foot trajectory respectively,which can ensure the acceleration curve of the foot-end smoother and more successive,and reduce the contact force between feet and environment.Because of the variable topology mechanism characteristic of quadruped robot,the leg state is divided into three different phases which are swing phase,transition phase and stance phase during one trot gait cycle.The non-continuous variable constraint between feet and environment of quadruped robot is studied.The dynamic model of quadruped robot is derived considering the variable topology mechanism characteristic,the periodic contact and elastic elements of the robot.The total energy consumption of walking robot during one gait cycle is analyzed based on the dynamic model.The specific resistance is used to evaluate energy efficiency of quadruped robot.The calculation results show the relationships between specific resistance and gait parameters,which can be used to determine the reasonable gait parameters.
     - 中国机械工程学报
    文章来源: 万方数据
  • Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic welding technology is a hotspot of EPL which is one of the key technologies to be solved. A robot for automatic welding of "8" type EPL is studied. Four quadrants of mathematical equations of the 8-shaped cross-section track of EPL, consisting of multiple arcs, are established. Mechanism program for complex cross-section welding of EPL based on angle detection is proposed according to characteristics of small size, small valleys, and large forming errors, etc. A welding velocity vector control model is established by linkage control of a welding vehicle, a small driven actuator, and a height tracking mechanism. A constant speed control model based on an angle and symmetrical analysis model of rectangular coordinate system for EPL is built. Constraint conditions of constant speed control between each section are analyzed with 4 sections in first quadrant as an example, and cooperation work mechanism of the welding vehicle and the small tracking actuator is established based on pressure detection. The constant speed control model using angle self-test can be used to avoid the need for a precise mathematical model for tracking control and to adapt manufacture and installation deviation of EPL workpiece. The model is able to solve constant speed and trajectory tracking problems of EPL cross-section welding. EPL seams welded by the studied robot are good in appearance, and non-destructive testing(NDT) shows the seams are good in quality with no welding defects. Bulge tests show that the maximum pressure of welded EPL is 35 MPa, which can fulfill expansion performance requirements.
     - 中国机械工程学报
    文章来源: 万方数据
  • Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.
    LUO Yang,LI Qimin,LIU Zhangxing - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • Steering control of a capsule robot in curve environment by magnetic navigation is not yet solved completely.A petal-shaped capsule robot with less steering resistance based on multiple wedge effects is presented,and an optimization method with two processes for determining the orientation of a pre-applied universal magnetic spin vector is proposed.To realize quick and non-contact steering swimming,a fuzzy comprehensive evaluation method for optimizing the steering driving angle is presented based on two evaluation indexes including the average steering speed and the average steering trajectory deviation,achieving the initial optimal orientation of a universal magnetic spin vector.To further reduce robotic magnetic vibration,a main target method for optimizing its final orientation,which is used for fine adjustment,is employed under the constrains of the magnetic moments.Swimming experimental results in curve pipe verified the effectiveness of the optimization method,which can be effectively used to realize non-contact steering swimming of the petal-shaped robot and reduce its vibration.
     - 中国机械工程学报
    文章来源: 万方数据
共1页 转到