-
Cavitation of centrifugal blood pump is a serious problem accompany with the blocking failure of short inlet cannula.However,hardly any work has been seen in published literature on this complex cavitation phenomenon caused by the coupling effect of inlet cannula blocking and pumps suction.Even for cavitation studies on ordinary centrifugal pumps,similar researches on this issue are rare.In this paper,the roles of throttling,rotation speed and fluid viscosity on bubble inception and intensity in a centrifugal blood pump are studied,on the basis of experimental observations.An adjustable throttle valve installed just upstream blood pump inlet is used to simulate the throttling effect of the narrowed inlet cannula.The rotation speed is adjusted from 2 600 r/min to 3 200 r/min.Glycerin water solutions are used to investigate the influences of kinetic viscosity.Bubbles are recorded with a high-speed video camera.Direct observation shows that different from cavitation in industrial centrifugal pumps,gas nuclei appears at the nearby of vane leading edges while throttling is light,then moves upstream to the joint position of inlet pipe and pump with the closing of the valve.It's found that the critical inlet pressure,obtained when bubbles are first observed,decreases linearly with viscosity and the slope is independent with rotation speeds;the critical inlet pressure and the inlet extreme pressure which is obtained when the throttle valve is nearly closed,fall linearly with rotation speed respectively and the relative pressure between them is independent with rotation speed and fluid viscosity.This paper studies experimentally on cavitation in centrifugal blood pump that caused by the failure of assembled short inlet cannula,which may beneficial the design of centrifugal blood pump with inlet cannula.- 中国机械工程学报文章来源: 万方数据
-
The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions-constant, linear, and quadratic-are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12–2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25.71–3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.- 中国机械工程学报文章来源: 万方数据
-
The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.- 中国机械工程学报文章来源: 万方数据
-
1000MW超超临界汽轮机低压II转子高速动平衡研究
对1000MW机组低压II转子高速动平衡过程进行了分析,并对动平衡所用设备及转子的平衡方法进行介绍,为今后国内相关百万超超临界机组转子平衡提供参考和借鉴.李立波,邹本艳,李雅武,张修寰 - 汽轮机技术文章来源: 万方数据

