排序:
共找到21条结果
  • The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization.The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid.In this study,on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle,three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant.The three-dimensional flow fields in three centrifugal pumps are numerically simulated,and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller.The three pumps have nearly the same pressure distributions at the small flow rate,but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates.The pump head and efficiency are also influenced by the blade wrap angle.The highest head and efficiency are also observed for the largest angle.An experiment rig is designed and built to test the performance of the pump with the largest wrap angle.The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis.The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.
     - 中国机械工程学报
    文章来源: 万方数据
  • Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain,e.g.,pure mechanical systems.Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops.In this paper,the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models.A stability criterion of multi-domain composite simulation is established,and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation.The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations,and it is used here in simulation of the system composed of mechanical system and hydraulic system.The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model,and it is utilized here in simulation of the system composed of forging system,mechanical and hydraulic system.The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces,mechanical system and hydraulic system of a manipulator.The system dynamics simulation results show that curves of motion and force are continuous and convergent.This paper presents two algorithms,which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator,and play a key role in simulation efficiency and stability.
     - 中国机械工程学报
    文章来源: 万方数据
  • Longitudinal vibration,torsional vibration and their coupled vibration are the main vibration modes of the crankshaft-sliding bearing system.However,these vibrations of the propeller-crankshaft-sliding bearing system generated by the fluid exciting force on the propeller are much more complex.Currently,the torsional and longitudinal vibrations have been studied separately while the research on their coupled vibration is few,and the influence of the propeller structure to dynamic characteristics of a crankshaft has not been studied yet.In order to describe the dynamic properties of a crankshaft accurately,a nonlinear dynamic model is proposed taking the effect of torsional-longitudinal coupling and the variable inertia of propeller,connecting rod and piston into account.Numerical simulation cases are carried out to calculate the response data of the system in time and frequency domains under the working speed and over-speed,respectively.Results of vibration analysis of the propeller and crankshaft system coupled in torsional and longitudinal direction indicate that the system dynamic behaviors are relatively complicated especially in the components of the frequency response.For example,the 4 times of an exciting frequency acting on the propeller by fluid appears at 130 r/min,while not yield at 105 r/min.While the possible abnormal vibration at over-speed just needs to be vigilant.So when designing the propeller shafting used in marine diesel engines,strength calculation and vibration analysis based only on linear model may cause great errors and the proposed research provides some references to design diesel engine propeller shafting used in large marines.
     - 中国机械工程学报
    文章来源: 万方数据
  • Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine tools.This paper describes a method to estimate its thermal deformation based on updated finite element(FE)model methods.Firstly,a FE model is established for a linear motor drive test rig that includes the correlation between temperature rise and its resulting deformation.The relationship between the input and output variables of the FE model is identified with a modified multivariate input/output least square support vector regression machine.Additionally,the temperature rise and displacements at some critical points on the mechanism are obtained experimentally by a system of thermocouples and an interferometer.The FE model is updated through intelligent comparison between the experimentally measured values and the results from the regression machine.The experiments for testing thermal behavior along with the updated FE model simulations is conducted on the test rig in reciprocating cycle drive conditions.The results show that the intelligently updated FE model can be implemented to analyze the temperature variation distribution of the mechanism and to estimate its thermal behavior.The accuracy of the thermal behavior estimation with the optimally updated method can be more than double that of the initial theoretical FE model.This paper provides a simulation method that is effective to estimate the thermal behavior of the direct feed drive mechanism with high accuracy.
     - 中国机械工程学报
    文章来源: 万方数据
  • Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k–ε, renormalization group k–ε, and Spalart–Allmars models, the Realizable k–ε model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.
     - 中国机械工程学报
    文章来源: 万方数据
  • The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.
     - 中国机械工程学报
    文章来源: 万方数据
  • 硅油乳状液体系搅拌槽内混合过程的数值模拟

    在FLUENT6-3.26软件平台上,采用多重参考系和标准κ-ε湍流模型、SIMPLE压力一速度耦合算法对硅油乳状液体系搅拌槽内流场进行模拟.模拟以中粘乳状液为物系,采用0.0465m半径的搅拌槽及框式搅拌浆,在和实验相同的1200r·min^-1转速的流场进行模拟.计算了上述条件下的速度场和浓度场.同时采用数值模拟方法研究了在不同示踪剂监控点的混合规律,并对模拟结果进行可视化定量研究分析.模拟结果表明,混合过程由搅拌槽内流体流动控制,混合时间与示踪剂监控点位置密切相关.
    倪邦庆,王秋实,范明明 - 计算机与应用化学
    文章来源: 万方数据
  • 矿用防爆电机三维温度场研究

    电机温升对电机的性能有重要影响,是电机设计的关键.基于流体动力学原理,对矿用防爆电机的热流耦合场进行数值计算,得到了电机内部流场特性、电机整体温度分布、电机各部件峰值温度及所在位置.通过方案比较,确定定、转子铁心长度;然后进行结构优化,采用电机内置风扇、定转子铁心增设通风孔两种方法增强电机内部冷却效果,并验证数值计算的可行性.所得结论为电机设计提供了一定的理论参考.
    郑国丽,黄鹏程 - 电机与控制应用
    文章来源: 万方数据
  • Further development of the photovoltaic industry is restricted by the productivity of mono-crystalline silicon technology due to its requirements of low cost and high efficient photocells.The heat shield is not only the important part of the thermal field in Czochralski(Cz)mono-crystalline silicon furnace,but also one of the most important factors influencing the silicon crystal growth.Large-diameter Cz-Si crystal growth process is taken as the study object.Based on FEM numerical simulation,different heat shield structures are analyzed to investigate the heater power,the melt-crystal interface shape,the argon flow field,and the oxygen concentration at the melt-crystal interface in the process of large Cz-Si crystal growth.The impact of these factors on the growth efficiency and crystal quality are analyzed.The results show that the oxygen concentration on the melt-crystal interface and the power consumption of the heater stay high due to the lack of a heat shield in the crystal growth system.Argon circumfluence is generated on the external side of the right angle heat shield.By the right-angle heat shield,the speed of gas flow is lowered on the melt free surface,and the temperature gradient of the free surface is increased around the melt-crystal interface.It is not conducive for the stable growth of crystal.The shape of the melt-crystal interface and the argon circulation above the melt free surface are improved by the inclined heat shield.Compared with the others,the system pulling rate is increased and the lowest oxygen concentration is achieved at the melt-crystal interface with the composite heat shield.By the adoption of the optimized composite heat shield in experiment,the real melt-crystal interface shapes and its deformation laws obtained by Quick Pull Separation Method at different pulling rates agree with the simulation results.The results show that the method of simulation is feasible.The proposed research provides the theoretical foundation for the thermal field design of the large diameter Cz-Si monocrystalline growth.
     - 中国机械工程学报
    文章来源: 万方数据
  • The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work.
     - 中国机械工程学报
    文章来源: 万方数据
共3页 转到