-
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming.However,convergence rate of iterative methods is difficult to improve greatly.To increase the springback compensate speed of designing age forming mold,process of calculating springback for a certain mold with finite element method is analyzed.Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method.The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB.Three rectangular integrated panels of dimensions 710 mm′750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies.The algorithm is used to compute mold contours for the panels with cylinder,sphere and saddle contours respectively and it takes 57%,22%and 33%iterations as compared to that of displacement adjustment(DA)method.At the end of iterations,maximum deviations on the three panels are 0.618 4 mm,0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method(0.740 8 mm,0.740 8 mm and 0.713 7 mm respectively).In following experimental verification,mold contour for another integrated panel with 400 mm*380 mm size is designed by the algorithm.Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise.Deviation between measuring results and the panel's design contour is less than 1 mm.Finally,the iterations with different mesh sizes(40 mm,35mm,30 mm,25 mm,20 mm)in finite element models are compared and found no considerable difference.Another possible compensation method,Broyden-Fletcher-Shanmo method,is also presented based on the solving nonlinear functions idea.The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel.It only takes 50%iterations compared to that of DA.The proposed method can serve a faster mold contour compensation method for sheet metal forming.- 中国机械工程学报文章来源: 万方数据
-
多年调节水库兴利调节计算分析
多年调节水库调节性能较高,其兴利库容对整个工程规模的确定至关重要.以贵州省麻江县上寨水库多年调节水库为例,通过对水库的径流系列进行分析,采用时历法和数理统计法对水库的兴利库容进行计算,对该水库的兴利库容计算结果进行了评价,并对多年调节水库兴利调节中采用的基础资料及计算方法进行了简要分析.吕海军 - 南水北调与水利科技文章来源: 万方数据 -
Steering control of a capsule robot in curve environment by magnetic navigation is not yet solved completely.A petal-shaped capsule robot with less steering resistance based on multiple wedge effects is presented,and an optimization method with two processes for determining the orientation of a pre-applied universal magnetic spin vector is proposed.To realize quick and non-contact steering swimming,a fuzzy comprehensive evaluation method for optimizing the steering driving angle is presented based on two evaluation indexes including the average steering speed and the average steering trajectory deviation,achieving the initial optimal orientation of a universal magnetic spin vector.To further reduce robotic magnetic vibration,a main target method for optimizing its final orientation,which is used for fine adjustment,is employed under the constrains of the magnetic moments.Swimming experimental results in curve pipe verified the effectiveness of the optimization method,which can be effectively used to realize non-contact steering swimming of the petal-shaped robot and reduce its vibration.- 中国机械工程学报文章来源: 万方数据
-
纳米SiO2在不同分散条件下对水泥基材料微观结构、性能的影响
采用手工搅拌、高速研磨搅拌以及高速研磨搅拌加超声波震荡这3种方法对纳米SiO2进行分散处理,研究了不同处理方式下纳米SiO2对水泥浆体性能的影响.用扫描电镜(SEM)观测了浆体微观结构,并采用紫外-可见分光光度法测定了在不同分散方法下纳米SiO2的分散程度.结果表明,采用后2种方法处理的纳米SiO2分散程度更高,可大幅提高水泥砂浆的抗压、抗折强度,使砂浆水化产物结构均匀,更密实.董健苗,刘晨,龙世宗 - 建筑材料学报文章来源: 万方数据 -
Common compliant joints generally have limited range of motion,reduced fatigue life and high stress concentration.To overcome these shortcomings,periodically corrugated cantilever beam is applied to design compliant joints.Basic corrugated beam unit is modeled by using pseudo-rigid-body method.The trajectory and deformation behavior of periodically corrugated cantilever beam are estimated by the transformation of coordinate and superposition of the deformation of corrugated beam units.Finite element analysis(FEA)is carried out on corrugated cantilever beam to estimate the accuracy of the pseudo-rigid-body model.Results show that the kinetostatic behaviors obtained by this method,which has a relative error less than 6%,has good applicability and corrugated cantilever beam has the characteristics of a large range of motion and high mechanical strength.The corrugated cantilever beam is then applied to design a flexible rotational joint to obtain a larger angle output.The paper proposes a pseudo-rigid-body model for corrugated cantilever beam and designed a flexible rotational joint with large angle output.- 中国机械工程学报文章来源: 万方数据
-
The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, the ride comfort according to the common principle of probability and statistics and simple binary logic is unable to reflect these uncertainties. The random fuzzy evaluation model from people subjective response to vibration is adopted in the paper, these uncertainties are analyzed from the angle of psychological physics. Discussing the traditional evaluation of ride comfort during vehicle vibration, a fuzzily random evaluation model on the basis of annoyance rate is proposed for the human body's subjective response to vibration, with relevant fuzzy membership function and probability distribution given. A half-car four degrees of freedom suspension vibration model is described, subject to irregular excitations from the road surface, with the aid of software Matlab/Simulink. A new kind of evaluation method for ride comfort of vehicles is proposed in the paper, i.e., the annoyance rate evaluation method. The genetic algorithm and neural network control theory are used to control the system. Simulation results are obtained, such as the comparison of comfort reaction to vibration environments between before and after control, relationship of annoyance rate to vibration frequency and weighted acceleration, based on ISO2631/1(1982), ISO 2631–1(1997) and annoyance rate evaluation method, respectively. Simulated assessment results indicate that the proposed active suspension systems prove to be effective in the vibration isolation of the suspension system, and the subjective response of human being can be promoted from very uncomfortable to a little uncomfortable. Furthermore, the novel evaluation method based on annoyance rate can further estimate quantitatively the number of passengers who feel discomfort due to vibration. A new analysis method of vehicle comfort is presented.- 中国机械工程学报文章来源: 万方数据
-
Vehicle mass is an important parameter in vehicle dynamics control systems.Although many algorithms have been developed for the estimation of mass,none of them have yet taken into account the different types of resistance that occur under different conditions.This paper proposes a vehicle mass estimator.The estimator incorporates road gradient information in the longitudinal accelerometer signal,and it removes the road grade from the longitudinal dynamics of the vehicle.Then,two different recursive least square method(RLSM)schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions.A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters.The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations.The modification of the algorithm is also discussed to improve the result of the mass estimation.Experiment data on a sphalt road,plastic runway,and gravel road and on sloping roads are used to validate the estimation algorithm.The adaptability of the algorithm is improved by using data collected under several critical operating conditions.The experimental results show the error of the estimation process to be within 2.6%,which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications.This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.- 中国机械工程学报文章来源: 万方数据
-
Natural frequency characteristics of a thin-walled multiple layered cylindrical shell under lateral pressure are studied.The multiple layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The multiple layered shell equations with lateral pressure are established based on Love's shell theory.The governing equations of motion with lateral pressure are employed by using energy functional and applying the Ritz method.The boundary conditions represented by end conditions of the multiple layered cylindrical shell are simply supported-clamped(SS-C),free-clamped(F-C)and simply supported-free(SS-F).The influence of different lateral pressures,different thickness to radius ratios,different length to radius ratios and effect of the asymmetric boundary conditions on natural frequency characteristics are studied.It is shown that the lateral pressure has effect on the natural frequency of multiple layered cylindrical shell and causes the natural frequency to increase.The natural frequency of the developed multilayered cylindrical shell is validated by comparing with those in the literature.The proposed research provides an effective approach for vibration analysis shell structures subjected to lateral pressure with an energy method.- 中国机械工程学报文章来源: 万方数据
-
The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation. A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-α integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system. Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.- 中国机械工程学报文章来源: 万方数据
-
Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson-θ-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincaré map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.- 中国机械工程学报文章来源: 万方数据

