排序:
共找到3条结果
  • The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.
     - 中国机械工程学报
    文章来源: 万方数据
  • The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.
     - 中国机械工程学报
    文章来源: 万方数据
  • The accurate measurement on the compressibility and thermal expansion coefficients of density standard liquid at 2329kg/m3(DSL-2329) plays an important role in the quality control for silicon single crystal manufacturing. A new method is developed based on hydrostatic suspension principle in order to determine the two coefficients with high measurement accuracy. Two silicon single crystal samples with known density are immersed into a sealed vessel full of DSL-2329. The density of liquid is adjusted with varying liquid temperature and static pressure, so that the hydrostatic suspension of two silicon single crystal samples is achieved. The compression and thermal expansion coefficients are then calculated by using the data of temperature and static pressure at the suspension state. One silicon single crystal sample can be suspended at different state, as long as the liquid temperature and static pressure function linearly according to a certain mathematical relationship. A hydrostatic suspension experimental system is devised with the maximal temperature control error ±50 μK; Silicon single crystal samples can be suspended by adapting the pressure following the PID method. By using the method based on hydrostatic suspension principle, the two key coefficients can be measured at the same time, and measurement precision can be improved due to avoiding the influence of liquid surface tension. This method was further validated experimentally, where the mixture of 1, 2, 3-tribromopropane and 1,2-dibromoethane is used as DSL-2329. The compressibility and thermal expansion coefficients were measured, as 8.5′10–4 K–1 and 5.4′10–10 Pa–1, respectively.
     - 中国机械工程学报
    文章来源: 万方数据
共1页 转到