排序:
共找到5条结果
  • The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation,however,there are little researches focusing on the effect of machine center elastic deformations on workspace volume.Therefore,a method called pre-deformation for assembly performance is presented.This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering(CAE)analysis.The research goal is to enhance assembly performance,including straightness,positioning,and angular errors,to realize the precision of the machine tool design.A vertical machine center is taken as an example to illustrate the proposed method.The concept of travel error is defined to obtain the law of the guide surface.The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation.Then,the guide surface in normal direction is processed with the pre-deformation function,and the machine tool assembly performance is measured using a laser interferometer.The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9%of the allowable value primarily because of the gravity of the spindle head,and the straightness of the X and Y components is minimal.When the machine tool is processed in pre-deformation,the straightness of the Z axis moving component is reduced to 91.2%.This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.
     - 中国机械工程学报
    文章来源: 万方数据
  • Forming limit curves(FLCs) are commonly used for evaluating the formability of sheet metals. However, it is difficult to obtain the FLCs with desirable accuracy by experiments due to that the friction effects are non-negligible under warm/hot stamping conditions. To investigate the experimental errors, experiments for obtaining the FLCs of the AA5754 are conducted at 250℃. Then, FE models are created and validated on the basis of experimental results. A number of FE simulations are carried out for FLC test-pieces and punches with different geometry configurations and varying friction coefficients between the test-piece and the punch. The errors for all the test conditions are predicted and analyzed. Particular attention of error analysis is paid to two special cases, namely, the biaxial FLC test and the uniaxial FLC test. The failure location and the variation of the error with respect to the friction coefficient are studied as well. The results obtained from the FLC tests and the above analyses show that, for the biaxial tension state, the friction coefficient should be controlled within 0.15 to avoid significant shifting of the necking location away from the center of the punch; for the uniaxial tension state, the friction coefficient should be controlled within 0.1 to guarantee the validity of the data collected from FLC tests. The conclusions summarized are beneficial for obtaining accurate FLCs under warm/hot stamping conditions.
     - 中国机械工程学报
    文章来源: 万方数据
  • Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
     - 中国机械工程学报
    文章来源: 万方数据
  • Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.
     - 中国机械工程学报
    文章来源: 万方数据
  • 降水资料观测精度对小流域设计暴雨误差影响分析

    20世纪80年代以前,降水资料观测大部分以人工观测为主,小流域暴雨设计计算需要把最大1日雨量通过转换,计算出不同时段的设计暴雨.80年代以后,随着自记雨量观测应用,到目前已经有20多年的资料系列,小流域暴雨设计的计算就可以直接利用时段实测降水资料系列进行计算,通过对邢台市石河水库小流域暴雨设计结果分析,两种方法计算结果最大误差为25.53%,暴雨设计误差直接影响设计洪水的大小.因此,在当地自记降水资料系列允许的情况下,尽量采用实测降水资料直接计算,以避免设计暴雨的误差.
    冯智学,杨晓红 - 南水北调与水利科技
    文章来源: 万方数据
共1页 转到