原文链接:万方
张明,曾庆军,眭翔,鲁迎迎,刘慧婷
MEMS陀螺仪工作时,容易受到各种噪声,尤其是高频噪声影响,不利于导航系统长时间工作,因此需要对数据实时去噪。互补集合经验模态分解( CEEMD)是一种按照自身尺度进行信号分解的算法,信号震荡随着分解级数逐渐减小,能够较好地分离高频和低频信号。以水下机器人MEMS陀螺仪为研究对象,根据水下实测数据,采用CEEMD分解陀螺信号,提取有效信息,并利用Allan方差验证CEEMD的有效性。仿真结果表明CEEMD对随机噪声、高频信号具有良好的降噪效果。
江苏科技大学电子信息学院,江苏 镇江,212003
江苏省研究生实践创新计划项目(SJLX_0493)
传感技术学报
2014012