排序:
共找到8条结果
  • 纳米碳化硅改性聚四氟乙烯复合材料的摩擦磨损性能

    采用不同偶联剂对纳米碳化硅进行表面处理后,制备了聚四氟乙烯/纳米碳化硅复合材料,考察了偶联剂种类和含量随载荷变化对复合材料摩擦磨损性能的影响,并利用扫描电子显微镜观察和分析了复合材料磨损表面形貌及其磨损机理.结果表明,经表面处理的纳米碳化硅填充后的复合材料硬度和摩擦磨损性能均有提高,以钛酸酯偶联剂(NDZ101)处理效果最好;随着偶联剂含量的增大,钛酸酯偶联剂(NDZ101)处理的复合材料的磨损量和摩擦因数均增大,偶联剂最佳含量为填料质量的1%;偶联剂处理后的纳米碳化硅与基体之间形成了良好的界面,复合材料的磨损以黏着磨损和磨粒磨损为主.
    路琴,吕少卉,何春霞 - 中国塑料
    文章来源: 万方数据
  • Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it's highly susceptible to corrosion environmental impacts,but the experimental research about it are few.In this paper,three kinds of impregnated graphite samples are prepared with different degree of graphitization,the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted.The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition.While in a corrosive environment(samples are soaked N2O4),the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low.If the degree of graphitization increase,the friction coefficient and amount of wear of samples increase too,the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30MPa?m/s.The impregnated graphite,which friction coefficient is stable and graphitization degree is in mid level,such#2,is more appropriate to have a work in the corrosion conditions.In this paper,preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied,the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials,and also provide some important design parameters for contact seal works in a corrosive environment.
     - 中国机械工程学报
    文章来源: 万方数据
  • Mechanical Properties and Microstructure Evolution of Cold-deformed High-nitrogen Nickel-free Austenitic Stainless Steel during Annealing

    The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.
    徐明舟,刘春明 - 武汉理工大学学报(材料科学版)(英文版)
    文章来源: 万方数据
  • Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic compliance&load-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.
     - 中国机械工程学报
    文章来源: 万方数据
  • 含吡唑基的苯骈咪唑的合成与光谱性能

    在乙醇溶剂中,于温和条件下以邻苯二胺和1-苯基吡畔-4-醛为原料合成了一种结构新颖的含吡唑取代基的苯骈咪唑杂环化合物,通过元素分析,MS,1H NMR对所合成的苯骈咪唑化合物的组成与结构进行了表征,同时对该化合物的紫外-可见光谱和荧光光谱进行了研究.
    任铁钢,刘蕾,王杰,黎桂辉 - 化学研究
    文章来源: 万方数据
  • Most researches on the static performance of stiffened panel joined by friction stir welding(FSW) mainly focus on the compression stability rather than shear stability. To evaluate the potential of FSW as a replacement for traditional rivet fastening for stiffened panel assembly in aviation application, finite element method(FEM) is applied to compare compression and shear stability performances of FSW stiffened panels with stability performances of riveted stiffened panels. FEMs of 2024-T3 aluminum alloy FSW and riveted stiffened panels are developed and nonlinear static analysis method is applied to obtain buckling pattern, buckling load and load carrying capability of each panel model. The accuracy of each FEM of FSW stiffened panel is evaluated by stability experiment of FSW stiffened panel specimens with identical geometry and boundary condition and the accuracy of each FEM of riveted stiffened panel is evaluated by semi-empirical calculation formulas. It is found that FEMs without considering weld-induced initial imperfections notably overestimate the static strengths of FSW stiffened panels. FEM results show that, buckling patterns of both FSW and riveted compression stiffened panels represent local buckling of plate between stiffeners. The initial buckling waves of FSW stiffened panel emerge uniformly in each plate between stiffeners while those of riveted panel mainly emerge in the mid-plate. Buckling patterns of both FSW and riveted shear stiffened panels represent local buckling of plate close to the loading corner. FEM results indicate that, shear buckling of FSW stiffened panel is less sensitive to the initial imperfections than compression buckling. Load carrying capability of FSW stiffened panel is less sensitive to the initial imperfections than initial buckling. It can be concluded that buckling loads of FSW panels are a bit lower than those of riveted panels whereas carrying capabilities of FSW panels are almost equivalent to those of riveted panels with identical geometries. Finite element method for simulating static performances of FSW and riveted stiffened panels is proposed and evaluated and some beneficial conclusions are obtained, which offer useful references for analysis and application of FSW to replace rivet fastening in aviation stiffened panel assembly.
     - 中国机械工程学报
    文章来源: 万方数据
  • Ф10mm碳纤维复合材料管成型工艺及性能研究

    对外径为Ф10mm碳纤维复合材料管成型工艺及性能进行了研究.结果表明,采用热缩工艺成型的碳纤维复合材料管工艺简单、质量可靠,Ф10mm碳纤维复合材料管件弯曲刚度与不锈钢管相当,弯曲强度为不锈钢的3倍以上,质量仅为不锈钢的50%,尺寸精度满足设计要求.
    赵锐霞,尹亮,潘玲英,董波 - 宇航材料工艺
    文章来源: 万方数据
  • The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.
     - 中国机械工程学报
    文章来源: 万方数据
共1页 转到