排序:
共找到24条结果
  • 单分子膨胀型阻燃剂季戊四醇酯三聚氰胺磷酸盐阻燃高密度聚乙烯

    采用自行合成的单分子膨胀阻燃剂季戊四醇酯三聚氰胺磷酸盐(MPPL)以及混合型膨胀阻燃剂三聚氰胺磷酸盐(MP)/李戊四醇(PEL)阻燃高密度聚乙烯,比较了2种阻燃材料的各项性能指标,研究表明:单分子膨胀阻燃材料体系具有更优异的阻燃性能、机械力学性能以及耐水性.通过热失重测试和炭层形貌表征分析研究了2种体系阻燃性能显著差异的原因.
    刘渊,李江,徐熠,王琪 - 塑料
    文章来源: 万方数据
  • 超高相对分子质量聚乙烯烧结微孔管中流体流动的数值模拟

    介绍了多孔介质流体动力学中颗粒填充床经典模型Ergun方程.在相同压降、相同孔径条件下,借助有限元分析软件ANSYS,模拟了过滤介质颗粒以立方和六方两种最密堆积结构的水渗透速率,从而分析了超高相对分子质量聚乙烯(PE-UHMW)微孔材料烧结成孔时原料粉体颗粒的堆积模式;最后将已测孔径的PDUHMW粉末烧结管的渗流速率与模拟实验进行了比较.结果表明,PDUHMW烧结微孔管中微孔主要是粉体颗粒以六方最密堆积结构形成的.
    方晓峰,何继敏,张强 - 中国塑料
    文章来源: 万方数据
  • 综合物探在强电磁干扰环境岩浆岩地区找水一例

    岩浆岩中的地下水主要赋存于各类裂隙中,其地球物理特征主要表现在构造破碎带与围岩之间的电性差.构造破碎带与完整围岩相比呈低阻反映,富水的断裂与完整围岩间电性差异更为明显,与非富水的断裂构造相比,其激电参数亦存在明显的差异性,这些物性差异为在岩浆岩区采用综合电法勘探提供了良好的地球物理前提.强电磁干扰对物探工作影响很大.通过综合物探方法在地处存在强电磁干扰的岩浆岩工作区内开展物探找水工作.采用高密度电法、音频大地电磁法以及激发极化法的有机结合,既可以提高工作效率,又可以互相印证,是一种很好的综合物探地下水勘查模式,在工作区取得了良好的效果.
    田蒲源,朱庆俊,连晟 - 南水北调与水利科技
    文章来源: 万方数据
  • Mechanical Properties and Microstructure Evolution of Cold-deformed High-nitrogen Nickel-free Austenitic Stainless Steel during Annealing

    The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.
    徐明舟,刘春明 - 武汉理工大学学报(材料科学版)(英文版)
    文章来源: 万方数据
  • The competition of surface and subsurface crack initiation induced failure is critical to understand very high cycle fatigue(VHCF)behavior,which necessitates the elucidation of the underlying mechanisms for the transition of crack initiation from surface to interior defects.Crack initiation potential in materials containing defects is investigated numerically by focusing on defect types,size,shape,location,and residual stress influences.Results show that the crack initiation potency is higher in case of serious property mismatching between matrix and defects,and higher strength materials are more sensitive to soft inclusions(elastic modulus lower than the matrix).The stress localization around inclusions are correlated to interior crack initiation mechanisms in the VHCF regime such as inclusion-matrix debonding at soft inclusions and inclusion-cracking for hard inclusions(elastic modulus higher than the matrix).It is easier to emanate cracks from the subsurface pores with the depth 0.7 times as large as their diameter.There exists an inclusion size independent region for crack incubation,outside which crack initiation will transfer from the subsurface soft inclusion to the interior larger one.As for elliptical inclusions,reducing the short-axis length can decrease the crack nucleation potential and promote the interior crack formation,whereas the long-axis length controls the site of peak stress concentration.The compressive residual stress at surface is helpful to shift crack initiation from surface to interior inclusions.Some relaxation of residual stress can not change the inherent crack initiation from interior inclusions in the VHCF regime.The work reveals the crack initiation potential and the transition among various defects under the influences of both intrinsic and extrinsic factors in the VHCF regime,and is helpful to understand the failure mechanism of materials containing defects under long-term cyclic loadings.
     - 中国机械工程学报
    文章来源: 万方数据
  • The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.
     - 中国机械工程学报
    文章来源: 万方数据
  • The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions-constant, linear, and quadratic-are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12–2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25.71–3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.
     - 中国机械工程学报
    文章来源: 万方数据
  • Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.
    XU Jing,PENG Xudong,BAI Shaoxian,MENG Xiangkai,LI Jiyun - 中国机械工程学报(英文版)
    文章来源: 万方数据
  • The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.
     - 中国机械工程学报
    文章来源: 万方数据
  • The accurate measurement on the compressibility and thermal expansion coefficients of density standard liquid at 2329kg/m3(DSL-2329) plays an important role in the quality control for silicon single crystal manufacturing. A new method is developed based on hydrostatic suspension principle in order to determine the two coefficients with high measurement accuracy. Two silicon single crystal samples with known density are immersed into a sealed vessel full of DSL-2329. The density of liquid is adjusted with varying liquid temperature and static pressure, so that the hydrostatic suspension of two silicon single crystal samples is achieved. The compression and thermal expansion coefficients are then calculated by using the data of temperature and static pressure at the suspension state. One silicon single crystal sample can be suspended at different state, as long as the liquid temperature and static pressure function linearly according to a certain mathematical relationship. A hydrostatic suspension experimental system is devised with the maximal temperature control error ±50 μK; Silicon single crystal samples can be suspended by adapting the pressure following the PID method. By using the method based on hydrostatic suspension principle, the two key coefficients can be measured at the same time, and measurement precision can be improved due to avoiding the influence of liquid surface tension. This method was further validated experimentally, where the mixture of 1, 2, 3-tribromopropane and 1,2-dibromoethane is used as DSL-2329. The compressibility and thermal expansion coefficients were measured, as 8.5′10–4 K–1 and 5.4′10–10 Pa–1, respectively.
     - 中国机械工程学报
    文章来源: 万方数据
共3页 转到